
An empirical study of encodings for group MaxSAT ⋆
Federico Heras, Antonio Morgado, Joao Marques-Silva

Publication date

01-01-2012

Published in

The 25th Canadian Conference on Artificial Intelligence (AI2012). Lecture Notes in Computer Science;7310,
pp. 85-96

Licence

This work is made available under the CC BY-NC-SA 1.0 licence and should only be used in accordance with
that licence. For more information on the specific terms, consult the repository record for this item.

Document Version
1

Citation for this work (HarvardUL)

Heras, F., Morgado, A.and Marques-Silva, J. (2012) ‘An empirical study of encodings for group MaxSAT ⋆’,
available: https://hdl.handle.net/10344/2769 [accessed 25 Jul 2022].

This work was downloaded from the University of Limerick research repository.

For more information on this work, the University of Limerick research repository or to report an issue, you can
contact the repository administrators at ir@ul.ie. If you feel that this work breaches copyright, please provide
details and we will remove access to the work immediately while we investigate your claim.

https://creativecommons.org/licenses/by-nc-sa/1.0/
mailto:ir@ul.ie

An Empirical Study of Encodings

for Group MaxSAT ⋆

Federico Heras, Antonio Morgado, and Joao Marques-Silva

CASL/CSI, University College Dublin, Dublin, Ireland
{fheras,ajrm,jpms}@ucd.ie

Abstract. Weighted Partial MaxSAT (WPMS) is a well-known opti-
mization variant of Boolean Satisfiability (SAT) that finds a wide range
of practical applications.WPMS divides the formula in two sets of clauses:
The hard clauses that must be satisfied and the soft clauses that can
be unsatisfied with a penalty given by their associated weight. How-
ever, some applications may require each constraint to be modeled as a
set or group of clauses. The resulting formalism is referred to as Group

MaxSAT. This paper overviews Group MaxSAT, and shows how several
optimization problems can be modeled as Group MaxSAT. Several en-
codings from Group MaxSAT to standard MaxSAT are formalized and
refined. A comprehensive empirical study compares the performance of
several MaxSAT solvers with the proposed encodings. The results in-
dicate that, depending on the underlying MaxSAT solver and problem
domain, the solver may perform better with a given encoding than with
the others.

1 Introduction

Weighted Partial MaxSAT (WPMS) [6] is a well-known optimization variant of
Boolean Satisfiability (SAT) that finds a wide range of practical applications [6].
WPMS divides the formula in a set of hard clauses that must be satisfied and
a set of soft clauses that can be unsatisfied with a penalty corresponding to the
weight associated to the soft clause. Problems modeled as WPMS associate an
independent soft clause to each original constraint that can be unsatisfied by
incurring the associated weight.

However, some applications may require each constraint to be modeled as
a set or group of clauses. In this case, each original constraint is modeled as a
soft group. As a result, any set of unsatisfied clauses belonging to the same soft
group contribute with a unique weight. The objective is to find an assignment
that satisfies all hard clauses and minimizes the sum of weights of unsatisfied
soft groups. This formalism is referred to as Group MaxSAT and was introduced
in [4] restricted to soft groups with weights 1.

This paper presents the Group MaxSAT problem and shows how several
problems can be modeled as Group MaxSAT including soft versions of CSPs

⋆ This work was partially supported by SFI PI grant BEACON (09/IN.1/I2618).

2 Federico Heras, Antonio Morgado, and Joao Marques-Silva

such as MaxCSP, Weighted Boolean Optimization (WBO) and an optimization
version of the Quasi Group Completion problem. Then, three encodings from
Group MaxSAT to (standard) MaxSAT are presented. The double weight encod-
ing is a refinement of the one presented in [4]. The ⊤-encoding is an extension
of the double weight encoding. Both the double weight and ⊤-encodings add
additional variables and clauses. The straight encoding essentially encodes the
Group MaxSAT formula into a MaxSAT formula without adding any additional
variables or clauses. But, this paper shows that the straight encoding can only
be applied soundly whenever the Group MaxSAT formula respects a specific
property. The empirical investigation analyzes the performance of branch and
bound and core-guided MaxSAT algorithms [6] with the different encodings. The
results indicate that, depending on the underlying MaxSAT solver and problem
domain, the solver may perform better with a given encoding than with the
others.

Note that recent practical applications have been modeled as WPMS implic-
itly using a ⊤-like encoding without realizing the general framework that can be
associated with them [1, 11]. This endorses the relevance of this study.

The remainder of this paper is organized as follows. Section 2 formally
presents the MaxSAT and Group MaxSAT problems. Section 3 introduces the
three encodings. Section 4 shows how to model several problems into Group
MaxSAT. Section 5 presents the empirical study that analyzes the performance of
several MaxSAT solvers with the different encodings. Finally, section 6 overviews
the related work and section 7 concludes the paper.

2 The Group MaxSAT problem

This section introduces the necessary definitions and notation related to the
MaxSAT and group MaxSAT problems.

MaxSAT Let X = {x1, x2, . . . , xn} be a set of Boolean variables. A literal is
either a variable xi or its negation x̄i. The variable to which a literal l refers
is denoted by var(l). Given a literal l, its negation l̄ is x̄i if l is xi and it is
xi if l is x̄i. A clause C is a disjunction of literals. An assignment is a set of
literals A = {l1, l2, . . . , ln} such that for all li ∈ A, its variable var(li) = xi is
assigned to true or false. If variable xi (x̄i) is assigned to true , literal xi (x̄i)
is satisfied and literal x̄i (xi) is unsatisfied. If all variables in X are assigned, the
assignment is called complete. An assignment satisfies a literal iff it belongs to
the assignment, it satisfies a clause iff it satisfies one or more of its literals and
it unsatisfies a clause iff it contains the negation of all its literals.

A weighted clause is a pair (Ci, wi), where Ci is a clause and wi is the cost of
unsatisfying it, also called its weight. Many real problems contain mandatory (or
hard) clauses that must be satisfied which are associated with a special weight
⊤. Non-mandatory clauses are also called soft clauses. A MaxSAT formula is
ϕ = ϕH ∪ϕS where ϕH is a set of hard clauses, and ϕS is a set of soft clauses. A

An Empirical Study of Encodings for Group MaxSAT 3

model is a complete assignment A that satisfies all mandatory clauses. The cost
of a model is the sum of weights of the soft clauses that it unsatisfies.

Group MaxSAT A group MaxSAT formula is ψ = ψH ∪ GS where ψH is a
set of hard clauses and GS = {(G1, w1), . . . , (Gm, wm)} is a set of soft groups.
Each group (Gi, wi) ∈ GS is defined by a set of clauses Gi = {Ci1, . . . , Cik}
and a weight wi. Any assignment that unsatisfies a subset of the clauses in a
soft group (Gi, wi) will be penalized with a unique cost of wi. The objective
of the group MaxSAT problem is to find an assignment that satisfies all hard
clauses and minimizes the sum of weights of unsatisfied soft groups. Note that
when each soft group is formed by just one clause, the group MaxSAT formula
actually represents a standard (partial) MaxSAT problem.

3 Encoding Group MaxSAT as standard MaxSAT

This section develops several encodings from Group MaxSAT to MaxSAT which
allow to solve Group MaxSAT with state-of-the-art MaxSAT solvers. In the
remaining of this section, ψ refers to a Group MaxSAT formula and ϕ refers to
MaxSAT formula.

Definition 1 (Double weight encoding). Each hard clause (C,⊤) ∈ ψ be-
comes a hard clause in ϕ. Let Gi = {Ci1, . . . , Cik} be the set of clauses in a
soft group (Gi, wi) ∈ ψ. Each clause in Gi is extended with the same additional
variable r and a weight 2wi is given to the resulting soft clause which is added
to ϕ. Additionally, the unit soft clause (r̄, wi) is also added to ϕ. Hence, the
soft group (Gi, wi) is translated into the soft clauses {(Ci1 ∨ r, 2wi), . . . , (Cik ∨
r, 2wi), (r̄, wi)}.

Observe that the original double weight encoding introduced in [4] repre-
sented hard clauses as soft weighted clauses, but without actually declaring them
as hard clauses using ⊤. Nevertheless, current MaxSAT solvers can take advan-
tage if the clauses are explicitly declared as hard. For this reason, the double
weight encoding has been reformulated in this way. Moreover, the clauses with
double weight can also be made hard without changing the semantics of the
encoding. This results in the ⊤-encoding.

Definition 2 (⊤-encoding). The hard clauses in ψ are simply added to ϕ
as hard clauses. Let Gi = {Ci1, . . . , Cik} be the set of clauses in a soft group
(Gi, wi) ∈ ψ. Each clause in Gi is extended with the same additional variable
r and a weight ⊤ is given to the resulting hard clause which is added to ϕ.
Additionally, the unit soft clause (r̄, wi) is also added to ϕ. Hence, the soft group
(Gi, wi) is translated to the clauses {(Ci1 ∨ r,⊤), . . . , (Cik ∨ r,⊤), (r̄, wi)}, where
all clauses are hard except the unit clause (r̄, wi).

One more encoding is considered in this paper which is referred to as straight
encoding. Essentially, the Group MaxSAT formula is encoded into a MaxSAT
formula without adding additional variables or clauses.

4 Federico Heras, Antonio Morgado, and Joao Marques-Silva

Definition 3 (Straight encoding). Each hard clause (C,⊤) ∈ ψ becomes a
hard clause in ϕ. For each clause C of a soft group (Gi, wi) ∈ ψ (i.e. C ∈ Gi),
the soft clause (C,wi) is added to ϕ.

However, such encoding may not maintain the semantics of the original Group
MaxSAT formula (i.e. any assignment in the original Group MaxSAT formula
should have exactly the same cost in the resulting MaxSAT formula). To deter-
mine whether the straight encoding can be applied or not, the following property
has been identified.

Property 1 (One unsat property). The Group MaxSAT formula ψ is said to sat-
isfy the one unsat property (OUP) if any optimal model A unsatisfies at most
one clause for each soft group of ψ.

Remark 1. Given a Group MaxSAT formula ψ that satisfies the one unsat prop-
erty (i.e. OUP(ψ) is true), the straight encoding can be safely applied to ψ.

4 Modeling problems as Group MaxSAT

This section introduces several optimization problems and shows how to model
them as a Group MaxSAT formula. Then, it is studied which encodings into
MaxSAT can be applied to the proposed modeling. In particular, the double
weight and ⊤-encodings can always be applied. Differently, the straight encoding
can only be applied if the modeling respects the one unsat property.

Weighted Boolean Optimization. A Weighted Boolean Optimization in-
stance (WBO) [15] is composed by a set of soft constraints PBs and a set of hard
constraints PBh. Each soft constraint (PBi, wi) ∈ PBs has associated a weight
wi > 0. Each constraint in WBO is a pseudo-Boolean (PB) constraint that can
be translated to clauses using any of the available encodings in the literature [7].
A PB constraint PBi has the form

∑n

j=1 aij lj ≥ bi, where xj ∈ {0, 1}, lj is either
xj or 1 − xj , and cj , aij and bi are non-negative integers. The WBO problem
consists in finding an assignment that satisfies all hard constraints such that the
sum of weights of unsatisfied soft constraints is minimized. A WBO problem can
be casted into Group MaxSAT: (1) each hard constraint PBi ∈ PBh is trans-
lated to a set of hard clauses [7], (2) each soft constraint (PBi, wi) ∈ PBs is
translated to a set of clauses [7] that becomes a soft group (Gi, wi).

Proposition 1. The one unsat property does not hold in general for a Group
MaxSAT formula ψ built as stated above (i.e. OUP(ψ) is false).

Proof. Consider a WBO problem with four soft PB constraints: (x̄1 + x̄2 + x̄3 ≥
1, 2), (x1 ≥ 1, 1), (x2 ≥ 1, 1), (x3 ≥ 1, 1). A possible translation to clauses and
to soft groups of the PB constraints (using the pairwise encoding) is: (G1, 1) =
{(x̄1∨ x̄2), (x̄1∨ x̄3), (x̄2∨ x̄3)}, (G2, 1) = {(x1)}, (G3, 1) = {(x2)} and (G4, 1) =
{(x3)}. An optimal assignment is A = {x1, x2, x3} (with cost of 1) where just
the first PB constraint is unsatisfied but the three clauses representing it are
unsatisfied simultaneously in the same group G1.

An Empirical Study of Encodings for Group MaxSAT 5

Binary MaxCSP. The MaxCSP problem is a well-known optimization ver-
sion of the CSP problem. A MaxCSP is defined by a set of variables X =
{X1, . . . , Xn}. Each variable Xi has a domain of values Di = {1, 2, . . . , di} that
can take such variable. Several constraints C = {C1, . . . , Cm} are defined over
subsets of variables. This paper considers binaryMaxCSP where constraints only
involve pairs of variables. This means that having n variables, there can be at
most (n × (n − 1))/2 constraints. Each binary constraint Cj defined over vari-
ables Xj1 and Xj2 with respective domains Dj1 and Dj2 is formed by a set of
tuples Cj = {t1, . . . , tk}. Each tuple tk ∈ Cj forbids a simultaneous assignment
of the two variables in |Dj1 ×Dj1| (Cartesian product). There are several ways
to encode a CSP problem into clauses [16]. This paper just considers the direct
encoding but any other could be considered.

The direct encoding associates a Boolean variable xij with each value j of a
MaxCSP variable Xi with domain of d values and 1 ≤ j ≤ d. For each MaxCSP
variable Xi with values {1, 2, . . . , d} the following hard clauses are added to the
formula (xi1 ∨ xi2 ∨ · · · ∨ xid,⊤) (1), to ensure that each MaxCSP variable is
given a value. For each MaxCSP variable Xi and each pair of different values
j, k of Xi, the hard clause (x̄ij ∨ x̄ik,⊤) is added, to ensure that the variable Xi

is not given more than one value (2). Finally, for each tuple tk belonging to the
same constraint Cj (i.e. tk ∈ Cj) a binary clause representing its contribution is
added to the same soft group (Gj , 1).

Proposition 2. A Group MaxSAT formula ψ built as stated above always re-
spects the one unsat property (i.e. OUP(ψ) is true).

Proof. Consider an optimal model A for ψ. Without loss of generality, let (Gj , 1)
be the soft group defined for the constraint Cj involving the MaxCSP variables
X1 and X2 both with k values. Since A is optimal, then all hard clauses are
satisfied, in particular (2). Therefore at most one of the Boolean variables in
x11, . . . , x1k is assigned to true and at most one of the Boolean variables in
x21, . . . , x2k is assigned to true. Thus, at most one tuple is unsatisfied in Cj and
consequently in the soft group (Gj , 1).

Note that the straight encoding of the proposed Group MaxSAT formula
results in a MaxSAT formula which is identical to applying the direct encod-
ing from MaxCSP to MaxSAT in [3, 8]. Additionally, note that the logarithmic
[8] and minimal support encoding [3] produce a Group MaxSAT formula that
respects the one unsat property, whereas the support encoding [3] does not.

Quasigroup Completion Problem. Given an n × n matrix and n colors, a
latin square of order n is a colored matrix such that all cells are colored, each
color occurs exactly once in each row and each color occurs exactly once in each
column. The Quasigroup completion problem [12] (QCP) is a latin square where
a percentage of the cells have been initially colored. The task of interest is to
decide whether the partial quasigroup (latin square) can be completed so that
a full quasigroup is obtained. The minimum encoding [12] of QCP into a SAT
problem requires:

6 Federico Heras, Antonio Morgado, and Joao Marques-Silva

1. n3 Boolean variables. Variable xijk represents cell i, j with color k where
i, j, k = {1, 2, . . . , n}.

2. Some color to be assigned to each cell i, j: (xij1 ∨ xij2 ∨ · · · ∨ xijn).
3. No color to be repeated for row i: {(x̄i1k∨x̄i2k)∧(x̄i1k∨x̄i3k)∧. . . (x̄i1k∨x̄ink)}

for k = {1, 2, . . . , n}. Hence, a total of n row constraints.
4. No color to be repeated for column j: {(x̄1jk∨ x̄2jk)∧ (x̄1jk∨ x̄3jk) . . . (x̄1jk∨
x̄njk)} for k = {1, 2, . . . , n}. Hence, a total of n column constraints.

5. For each initially colored cell i, j with color k, the unit clause xijk is added.

This paper considers the optimization version of the QCP proposed in [4].
In this case, the goal is to find an assignment that minimizes the total number
of unsatisfied row and column constraints. To model such optimization problem
in group MaxSAT the set of variables is n3 as stated in 1. (above). Each clause
in 2. becomes a hard clause. All the clauses associated to each row constraint i
3. become a soft group (Gi, 1). All clauses associated to each column constraint
j 4. constitute a soft group (Gj , 1). Finally, each unit clause that represents a
colored cell in 5. is added as a hard clause.

Proposition 3. The one unsat property does not hold in general for a Group
MaxSAT formula ψ built as stated above (i.e. OUP(ψ) is false).

Proof.

A =





1 x x
x 2 3
x 3 2



 AS =





1 1 1
1 2 3
1 3 2





Let A be the matrix of order 3 above with some initial assignments. Cells with
value x means the color is undecided. A possible optimal solution is AS . Such
solution unsatisfies exactly one row constraint and one column constraint, and
at the same time unsatisfies more than one clause in the group representing the
unsatisfied row constraint and unsatisfies more than one clause in the the group
representing the unsatisfied column constraint.

Crafted Group MaxSAT instances. Let 〈v, k, r〉 be three natural numbers.
A set of k clauses are randomly created of size 3 involving variables in x1, . . . , xv.
Then a SAT solver is called to obtain a satisfying model A = {l1, l2, . . . , lv}. If
no such model exists, then the k clauses are generated again. This process is
repeated until a set of k clauses with a model is found. Then, one of the literals
is randomly selected and flipped in the assignment A. Given a literal li in A ,
if li is xi then a unit clause xi is created, otherwise x̄i is created. All the unit
clauses form a soft group with weight 1 (i.e. (Gi, 1)). Additionally, hard clauses
are added: (1) the set of k clauses; (2) the clause (l1 ∨ l2 ∨ . . . ∨ lv); and (3) the
constraint

∑v

i=1 xi ≤ 1 translated to hard clauses. This process is repeated r
times resulting in a Group MaxSAT instance with r soft groups.

Proposition 4. A Group MaxSAT formula ψ built as stated above always re-
spects the one unsat property (i.e. OUP(ψ) is true).

An Empirical Study of Encodings for Group MaxSAT 7

Solver
Partial Soft

Total
Sol Time Sol Time

#I 536 - 201 - 737

BC-T 431 84.11 157 64.92 588
BC-D 320 111.06 28 127.13 348

BCD-T 432 106.77 157 54.99 589
BCD-D 322 116.46 28 150.97 350

PM1-T 452 109.82 165 79.36 617
PM1-D 442 158.29 153 97.21 595

MM-T 366 70.02 37 228.23 403
MM-D 93 101.7 2 1.64 95

sat4j 349 97.33 161 107.26 510

Table 1. Results on WBO instances.

Proof. Consider an optimal model A for ψ. By contradiction, suppose that A
unsatisfies more than one clause in a soft group Gi. This means that such as-
signment A also unsatisfies the constraint (3). Since (3) are hard clauses, then
A cannot be a model for ψ.

5 Experimental Evaluation

The empirical evaluation studies the effect on the performance of complete
MaxSAT solvers on each of the encodings in Group MaxSAT formulas. Ex-
periments were conducted on a HPC cluster with 50 nodes, each node is a CPU
Xeon E5450 3GHz, 32GB RAM and Linux. For each run, the time limit was set
to 1200 seconds and a memory limit of 4GB.

Current most effective complete MaxSAT solvers are either based on branch
and bound or on iteratively calling a SAT oracle. MiniMaxSat (MM) [9] was
selected among other branch and bound solvers, because it takes additional
advantage of clause learning and backjumping on the instances considered. 3
solvers based on calling a SAT oracle were considered. The first one is WPM1

(PM1) [2]. PM1 is characterized by refining a lower bound, adding AtMost1
constraints to the formula and adding more than one relaxation variable per soft
clause. The second one is core-guided binary search (BC) [10]. BC is characterized
by refining both a lower bound and upper bound, adding AtMostK constraints
to the formula and adding at most one relaxation variable per soft clause. The
third one is core-guided binary search with disjoint cores (BCD) [10] which is
an extended version of BC that additionally exploits the information of disjoint
cores. Given a MaxSAT solver X, it can be executed to solve a Group MaxSAT
instance using the straight encoding S, the double weight encoding D or the
⊤-encoding. This is noted as X-S, X-D and X-T, respectively.

The results for the WBO instances are presented in Table 1 and the WBO
dedicated solver sat4j [5] is added to the comparison. All WBO instances with
small integers (smallint) track of the Pseudo-Boolean Competition 2011 were
considered. Such instances are divided into two categories: partial and soft small-
int. The first column shows the name of the solver. The second, fourth and sixth
columns, show the total number of solved instances by each solver for the partial

8 Federico Heras, Antonio Morgado, and Joao Marques-Silva

n %p #I
BC-T BC-D BCD-T BCD-D PM1-T PM1-D MM-T MM-D

Sol Time Sol Time Sol Time Sol Time Sol Time Sol Time Sol Time Sol Time

16 45 10 9 0.44 9 0.82 9 0.41 9 0.71 9 0.22 9 0.31 7 0.48 0 0.00
18 45 10 10 9.21 10 14.90 10 9.25 10 9.32 10 10.20 10 20.28 5 0.14 0 0.00
20 45 10 10 1.38 10 1.86 10 0.99 10 1.19 10 0.47 10 0.70 2 0.23 0 0.00
22 45 10 10 2.25 10 2.54 10 1.41 10 1.97 10 0.97 10 1.02 3 0.34 0 0.00

16 60 10 10 0.71 10 3.80 10 0.89 10 6.19 10 0.36 10 1.13 10 2.28 0 0.00
18 60 10 10 1.42 10 8.24 10 1.75 10 3.45 10 0.61 10 1.14 10 14.15 0 0.00
20 60 10 10 2.46 10 13.86 10 1.82 10 23.14 10 0.94 10 2.49 10 64.46 0 0.00
22 60 10 10 4.96 9 12.09 10 2.95 8 57.60 10 8.53 10 31.09 8 194.18 0 0.00

16 75 10 10 0.95 10 40.67 10 1.23 10 6.47 10 0.39 10 0.84 10 21.04 1 48.34
18 75 10 10 2.10 10 322.60 10 3.44 10 19.96 10 0.69 10 1.13 10 36.81 1 963.19
20 75 10 10 3.19 5 550.65 10 3.46 10 7.93 10 1.01 10 2.55 9 253.15 0 0.00
22 75 10 10 5.73 2 588.16 10 5.85 8 20.61 10 1.94 10 3.02 3 209.55 0 0.00

- - 120 119 - 105 - 119 - 115 - 119 - 119 - 87 - 2 -

Table 2. Results on QCP instances (BC, BCD, PM1 and MM).

category, the soft category and the sum of both, respectively. The third and fifth
columns display the average time of the solved instances by each solver for the
partial and soft categories, respectively. Observe that in this set of instances all
MaxSAT solvers obtain their best performance with the ⊤-encoding. The dou-
ble weight encoding is worst performing option, specially for BC, BCD and MM.
The solvers based on calling a SAT oracle (PM1, BC and BCD) perform quite
well on these instances, even better than the dedicated solver (sat4j) within the
specified memory and time limits.

The remaining tables present results for QCP, crafted Group MaxSAT and
MaxCSP. Each table shows in the left most columns the parameters used to
create each set of instances, and for each set, 10 instances were created (#I).
The remaining pairs of columns show the number of solved instances (Sol) and
the average time (Time) of the solved instances for each solver.

Table 2 presents the results for QCP instances. For such instances, the order
n of the latin square is fixed and the percentage of randomly preassigned cells
%p is varied from 45% to 75% (step 15%). The best solver for this benchmark
suite is PM1. All MaxSAT solvers perform worse with the double weight encod-
ing and such worsening is specially evident in MM being orders of magnitude
worse than with the ⊤-encoding. Note that when using the double weight en-
coding, maintaining disjoint cores (BCD) improves several orders of magnitude
the performance with respect the non-disjoint version (BC).

Tables 3 and 4 present the results for the crafted Group MaxSAT instances
defined by values 〈v, k, r〉 where v and k are the number of variables and the
number of clauses per repetition, respectively, and r is the the total number of
repetitions. The double weight encoding, depending on the solver, is the worst
option or the second option but never the best option. PM1 performs better
with the straight encoding, whereas BC and MM prefer the ⊤-encoding. The
differences in performance are quite small for all the three encodings for BCD in
this particular problem, the straight and ⊤ being slightly better than the double
weight encoding. Note that both BC and BCD apply a lower bound heuristic [10]

An Empirical Study of Encodings for Group MaxSAT 9

v k r #I
BC-S BC-T BC-D BCD-S BCD-T BCD-D

Sol Time Sol Time Sol Time Sol Time Sol Time Sol Time

10 20 50 10 10 0.09 10 0.10 10 12.40 10 0.07 10 0.07 10 0.10
10 20 75 10 10 0.28 10 0.19 9 44.75 10 0.14 10 0.15 10 0.22
10 20 100 10 10 0.48 10 0.29 6 5.13 10 0.25 10 0.27 10 0.36

50 100 100 10 10 9.48 10 9.72 3 417.53 10 7.67 10 8.55 10 12.31
50 100 200 10 10 50.35 10 45.60 0 0.00 10 32.23 10 34.85 10 48.04
50 100 300 10 10 103.32 10 114.59 0 0.00 10 97.81 10 98.84 10 110.77
50 100 400 10 10 182.59 10 230.25 0 0.00 10 172.07 10 167.02 10 201.52
50 100 500 10 10 311.43 10 289.33 0 0.00 10 226.40 10 352.32 10 349.13
50 100 600 10 10 357.53 10 369.83 0 0.00 10 294.56 10 353.49 10 390.09
50 100 700 10 10 538.78 10 442.91 0 0.00 10 446.19 10 525.32 10 591.83
50 100 800 10 10 650.02 10 595.21 0 0.00 10 534.42 10 586.20 10 679.10
50 100 900 10 6 797.94 10 708.68 0 0.00 10 669.56 10 744.14 10 852.80
50 100 1000 10 9 926.82 10 875.04 0 0.00 10 849.50 10 889.14 8 1080.78

- - - 130 125 - 130 - 28 - 130 - 130 - 128 -

Table 3. Crafted Group MaxSAT instances (BC and BCD).

v k r #I
PM1-S PM1-T PM1-D MM-S MM-T MM-D

Sol Time Sol Time Sol Time Sol Time Sol Time Sol Time

10 20 50 10 10 0.05 10 0.05 10 0.08 10 0.74 10 0.42 10 0.61
10 20 75 10 10 0.10 10 0.10 10 0.16 10 3.60 10 1.54 10 2.12
10 20 100 10 10 0.17 10 0.17 10 0.28 10 11.21 10 3.88 10 6.16

50 100 100 10 10 2.37 10 2.75 10 5.00 10 789.31 10 47.14 10 160.01
50 200 100 10 10 8.42 10 11.38 10 20.80 0 0.00 10 433.20 9 759.81
50 300 100 10 10 19.07 10 25.67 10 43.00 0 0.00 0 0.00 0 0.00
50 400 100 10 10 33.54 10 43.40 10 66.93 0 0.00 0 0.00 0 0.00
50 500 100 10 10 58.26 10 74.10 10 121.91 0 0.00 0 0.00 0 0.00
50 600 100 10 10 82.90 10 94.54 10 173.30 0 0.00 0 0.00 0 0.00
50 700 100 10 10 103.78 10 154.66 10 211.66 0 0.00 0 0.00 0 0.00
50 800 100 10 10 137.21 10 209.36 10 266.36 0 0.00 0 0.00 0 0.00
50 900 100 10 10 182.78 10 240.67 10 388.27 0 0.00 0 0.00 0 0.00
50 1000 100 10 10 230.87 10 312.95 10 478.02 0 0.00 0 0.00 0 0.00

- - - 130 130 - 130 - 130 - 40 - 50 - 49 -

Table 4. Crafted Group MaxSAT instances (PM1 and MM).

by default. Additional (but omitted) experiments show that if such heuristic is
deactivated, then the ⊤-encoding is orders of magnitude better for BC and BCD.

Tables 5 and 6 present the results for the binary MaxCSP instances. A
MaxCSP instance is defined by the values 〈n, d,%c,%t〉 following the proto-
col introduced in [13]. n is the number of variables and d is the number of values
for the domain of each variable. The percentage of constraints %c determines
how many binary constraints the problem has. 100% means that there exists
exactly one constraint for each pair of different variables. Finally, %t determines
the tightness of each constraint, where 100% means that there are d2 tuples
per constraint. MM is the best MaxSAT solver for this set of benchmarks. BC,
BCD and MM were executed in the same set of instances, whereas PM1 was
executed on smaller instances given its poor performance. For this benchmark,
the double weight encoding is by far the worst encoding for all the solvers (up
to several orders of magnitude). BC and BCD prefer the ⊤-encoding over the
straight encoding showing improvements of one or two orders of magnitude. In

10 Federico Heras, Antonio Morgado, and Joao Marques-Silva

n d %c %t #I
BC-S BC-T BC-D BCD-S BCD-T BCD-D

Sol Time Sol Time Sol Time Sol Time Sol Time Sol Time

15 5 50 65 10 10 19.95 10 1.26 8 615.71 10 35.94 10 0.73 6 542.23
15 5 50 70 10 10 52.98 10 1.69 1 354.56 10 111.67 10 1.10 0 0.00
15 5 50 75 10 10 118.24 10 3.08 0 0.00 10 170.19 10 1.79 0 0.00
15 5 50 80 10 8 342.14 10 2.49 0 0.00 10 308.38 10 2.16 0 0.00
15 5 50 85 10 6 324.32 10 2.09 0 0.00 8 636.09 10 2.07 0 0.00
15 5 50 90 10 6 540.56 10 1.66 0 0.00 6 610.48 10 1.39 0 0.00

12 5 100 65 10 3 489.56 10 25.00 0 0.00 6 720.41 10 27.05 0 0.00
12 5 100 70 10 2 1114.49 10 19.79 0 0.00 4 826.97 10 14.89 0 0.00
12 5 100 75 10 1 837.43 10 18.39 0 0.00 2 867.30 10 19.94 0 0.00
12 5 100 80 10 0 0.00 10 29.14 0 0.00 0 0.00 10 25.02 0 0.00
12 5 100 85 10 0 0.00 10 30.39 0 0.00 0 0.00 10 31.78 0 0.00
12 5 100 90 10 0 0.00 10 9.80 0 0.00 0 0.00 10 11.14 0 0.00

- - - - 120 56 - 120 - 9 - 66 - 120 - 6 -

Table 5. Results on MaxCSP instances (BC and BCD).

n d %c %t #I
MM-S MM-T MM-D

Sol Time Sol Time Sol Time

15 5 50 65 10 10 0.12 10 2.90 10 1.71

15 5 50 70 10 10 0.18 10 4.67 10 2.64

15 5 50 75 10 10 0.20 10 5.01 10 5.14

15 5 50 80 10 10 0.32 10 6.64 10 11.90

15 5 50 85 10 10 0.39 10 6.13 10 17.65

15 5 50 90 10 10 0.39 10 5.70 10 34.69

12 5 100 65 10 10 0.76 10 7.91 10 14.31

12 5 100 70 10 10 0.68 10 10.38 10 21.02

12 5 100 75 10 10 0.81 10 9.55 10 30.64

12 5 100 80 10 10 1.05 10 11.73 10 63.02

12 5 100 85 10 10 1.51 10 9.48 10 93.29

12 5 100 90 10 10 0.66 10 7.18 10 118.18

- - - - 120 120 - 120 - 120 -

n d %c %t #I
PM1-S PM1-T PM1-D

Sol Time Sol Time Sol Time

12 5 50 65 10 10 0.37 10 0.81 10 24.07

12 5 50 70 10 10 0.82 10 2.52 9 56.18

12 5 50 75 10 10 8.67 10 19.24 5 175.08

12 5 50 80 10 10 90.64 8 69.15 5 215.80

12 5 50 85 10 8 5.77 6 143.99 3 89.85

12 5 50 90 10 10 120.43 10 14.29 6 364.38

8 5 100 65 10 10 0.66 10 2.81 9 215.19

8 5 100 70 10 10 1.72 10 93.87 4 385.83

8 5 100 75 10 10 8.60 10 195.08 2 180.11

8 5 100 80 10 10 18.65 6 119.94 2 236.33

8 5 100 85 10 10 9.58 10 92.34 1 746.05

8 5 100 90 10 10 2.92 7 1.48 1 113.63

- - - - 120 118 - 107 - 57 -

Table 6. Results on MaxCSP instances (MM and PM1).

contrast, MM and PM1 prefer the straight encoding rather than the ⊤-encoding
also showing improvements of one or two orders of magnitude. Finally, note
that a dedicated WCSP solver [13] (Toulbar2.08) can solve the instances in
negligible time (not shown in tables).

Based on these experiments, several conclusions can be drawn. In general,
the⊤-encoding provides substantially better performance than the double weight
encoding for any kind of MaxSAT solver. MaxSAT solvers based on calling a SAT
oracle and adding AtMostK constraints (BC and BCD) prefer the ⊤-encoding to
the straight encoding (whenever available). Solvers based on calling a SAT oracle
and adding AtMost1 constraints (PM1), prefer the straight encoding. Finally,
branch and bound solvers (MM) may prefer the straight or the ⊤-encoding
depending on the specific problem being solved.

6 Related Work

The Group MaxSAT framework was introduced in [4] restricted to soft groups
with weights 1 under the name softCNF. In [4] the concept of hard groups is
also considered (i.e. sets of clauses such that any assignment must satisfy all of
them) and native branch and bound solver was proposed which is not publicly

An Empirical Study of Encodings for Group MaxSAT 11

available. Whenever a clause in a hard group becomes unit after some assign-
ments, unit propagation is safely applied. In fact, this is a property of the partial
MaxSAT problem and it can be applied directly to independent hard clauses of
a MaxSAT problem. For this reason, this paper does not consider hard groups.
Early MaxSAT solvers, predecessors to modern branch and bound [9] and core-
guided MaxSAT solvers [2], are compared in [4] against the native solver by
translating the Group MaxSAT problem into MaxSAT using a primitive version
of the double weight encoding. Nevertheless, experiments on similar benchmarks
(MaxCSP and QCP) indicate that modern MaxSAT solvers with the appropriate
encoding are orders of magnitude faster than the native solver in [4].

The one unsat property allows to represent several problems with the straight
encoding. As noted in the experiments, the straight encoding in the MaxCSP and
crafted Group MaxSAT benchmarks is the most appropriate encoding for some
MaxSAT solvers. This endorses the relevance of checking the one unsat property
introduced in this paper.

In [15] a translation from WBO to Pseudo-Boolean Optimization (PBO) is
introduced. A PBO [7] has the form:

minimize
∑n

j=1 cj · xj
subject to

∑n

j=1 aij lj ≥ bi, i = 1 . . .m
where xj ∈ {0, 1}, lj is either xj or 1 − xj , and cj , aij and bi are non-

negative integers. Each soft PB constraint (
∑n

j=1 aij lj ≥ bi, wi) is extended with

an additional variable r resulting in the PB constraint
∑n

j=1 aij lj + bir ≥ bi and
the element r̄ · wi is added to the minimization function of a PBO instance.
Such encoding can be understood as the PBO counterpart of the ⊤-encoding for
MaxSAT. It will be referred to as ⊤-pbo-encoding. Hence, WBO can be trans-
lated to MaxSAT using the ⊤-pbo-encoding to translate the WBO problem into
PBO and then from PBO to standard MaxSAT as suggested in [9]. Additional
experiments do not show major differences between using the ⊤-pbo-encoding
(from WBO to PBO and then from PBO to MaxSAT) and the ⊤-encoding (from
Group MaxSAT to MaxSAT) on the current available WBO instances.

In recent years, many practical applications have been modeled into PBO
and to MaxSAT implicitly using the ⊤-pbo-encoding and the ⊤-encoding, re-
spectively. Such works focus on the application itself rather than in the framework
used to model and solve the problem. Examples of such applications include the
optimization of area and delay in multiple constant multiplications [1] (PBO)
and the localization of errors in programs [11] (MaxSAT).

7 Conclusions and Future Work

This paper overviews Group MaxSAT and shows how it can be used to model
several optimization problems, including MaxCSP, WBO and an optimization
version of QCP. Then, three original encodings from Group MaxSAT to MaxSAT
are proposed. The double weight encoding is a refinement of the one introduced
in [4]. The ⊤−encoding extends the later one by declaring some of the clauses as
hard. Both the double and ⊤-encodings require additional variables and clauses.

12 Federico Heras, Antonio Morgado, and Joao Marques-Silva

This paper also introduces the one unsat property (OUP) which allows to char-
acterize which Group MaxSAT formulas can be translated to MaxSAT without
additional variables or clauses through the straight encoding.

To the best of our knowledge, this paper is the first to address the question
of how to encode Group MaxSAT as MaxSAT, and analyzes the impact of the
encodings on the performance of MaxSAT solvers. The empirical investigation
shed light on practical relevant questions on the best encoding for each MaxSAT
solver. This will help to choose the right approach in future applications.

Future research directions include to extend the study with additional Group
MaxSAT benchmarks and develop a Group MaxSAT solver based on a portfolio
of MaxSAT solvers. In particular, one line of work is to create a competence map
[14] to allow a dedicated Group MaxSAT solver to automatically decide which is
the most appropriate MaxSAT solver and encoding for a given Group MaxSAT
formula.

References

1. L. Aksoy, E. Costa, P. F. Flores, and J. Monteiro. Exact and approximate algo-
rithms for the optimization of area and delay in multiple constant multiplications.
IEEE Trans. on CAD of Integrated Circuits and Systems, 27(6), 2008.

2. C. Ansótegui, M. L. Bonet, and J. Levy. Solving (weighted) partial MaxSAT
through satisfiability testing. In SAT, pages 427–440, 2009.

3. J. Argelich, A. Cabiscol, I. Lynce, and F. Manyà. Modelling Max-CSP as partial
Max-SAT. In SAT, pages 1–14, 2008.

4. J. Argelich and F. Manyà. Exact Max-SAT solvers for over-constrained problems.
Journal of Heuristics, 12(4-5):375–392, 2006.

5. D. Le Berre and A. Parrain. The Sat4j library, release 2.2. JSAT, 7:59–64, 2010.
6. A. Biere, M. Heule, H. Maaren, and T. Walsh, editors. Handbook of Satisfiability,

2009.
7. N. Een and N. Sörensson. Translating Pseudo-Boolean Constraints into SAT.

Journal on Satisfiability, Boolean Modeling and Computation, 2:1–26, 2006.
8. F. Heras, J. Larrosa, S. Givry, and T. Schiex. 2006 and 2007 Max-SAT eval-

uations: Contributed instances. Journal on Satisfiability, Boolean Modeling and

Computation, 4(2-4):239–250, June 2008.
9. F. Heras, J. Larrosa, and A. Oliveras. MiniMaxSat: An efficient weighted Max-SAT

solver. Journal of Artificial Intelligence Research, 31:1–32, January 2008.
10. F. Heras, A. Morgado, and J. Marques-Silva. Core-guided binary search for maxi-

mum satisfiability. In AAAI Conference on Artificial Intelligence. AAAI, 2011.
11. M. Jose and R. Majumdar. Cause clue clauses: error localization using maximum

satisfiability. In ACM Conference on PLDI, pages 437–446, 2011.
12. H. A. Kautz, Y. Ruan, D. Achlioptas, C. P. Gomes, B. Selman, and M. E. Stickel.

Balance and filtering in structured satisfiable problems. In IJCAI, 2001.
13. J. Larrosa and T. Schiex. Solving weighted CSP by maintaining arc consistency.

Artif. Intell., 159(1-2):1–26, 2004.
14. Jérôme Maloberti and Michèle Sebag. Fast theta-subsumption with constraint

satisfaction algorithms. Machine Learning, 55(2):137–174, 2004.
15. V. M. Manquinho, R. Martins, and I. Lynce. Improving unsatisfiability-based

algorithms for Boolean optimization. In SAT, pages 181–193, 2010.
16. T. Walsh. SAT v CSP. In CP, pages 441–456, 2000.

	An empirical study of encodings for group MaxSAT ⋆

