University of Limerick
Browse

GeNePi: a multi-objective machine reassignment algorithm for data centres

Download (379.07 kB)
conference contribution
posted on 2015-03-16, 18:43 authored by Takfarinas Saber, Anthony Ventresque, Xavier Gandibleux, Liam Murphy
Data centres are facilities with large amount of machines (i.e., servers) and hosted processes (e.g., virtual machines). Managers of data centres (e.g., operators, capital allocators, CRM) constantly try to optimise them, reassigning `better' machines to processes. These man- agers usually see better/good placements as a combination of distinct objectives, hence why in this paper we de ne the data centre optimisa- tion problem as a multi-objective machine reassignment problem. While classical solutions to address this either do not nd many solutions (e.g., GRASP), do not cover well the search space (e.g., PLS), or even can- not operate properly (e.g., NSGA-II lacks a good initial population), we propose GeNePi, a novel hybrid algorithm. We show that GeNePi out- performs all the other algorithms in terms of quantity of solutions (nearly 6 times more solutions on average than the second best algorithm) and quality (hypervolume of the Pareto frontier is 106% better on average).

History

Publication

9th International Workshop on Hybrid Metaheuristics [Lecture Notes in Computer Science];8457, pp. 115-129

Publisher

Springer

Note

peer-reviewed

Other Funding information

SFI

Rights

The original publication is available at www.springerlink.com

Language

English

Usage metrics

    University of Limerick

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC