University of Limerick
Browse
- No file added yet -

Homotopy perturbation method and its convergence analysis for nonlinear collisional fragmentation equations

Download (1.33 MB)
conference contribution
posted on 2023-12-05, 15:29 authored by Nisha Yadav, Ashok DasAshok Das, Mehakpreet SinghMehakpreet Singh, Sukhjit Singh, Jitendra Kumar

The exploration of collisional fragmentation pheno-mena remains largely unexplored, yet it holds considerable importance in numerous engineering and physical processes. Given the nonlinear nature of the governing equation, only a limited number of analytical solutions for the number density function corresponding to empirical kernels are available in the literature. This article introduces a semi-analytical approach using the homotopy perturbation method to obtain series solutions for the nonlinear collisional fragmentation equation. The method presented here can be readily adapted to solve both linear and nonlinear integral equations, eliminating the need for domain discretization. To gain deeper insights intothe accuracy of the proposed method, a convergence analysis is conducted. This analysis employs the concept of contractive mapping within the Banach space, a well-established technique universally acknowledged for ensuring convergence. Various collisional kernels (product and polymerization kernels), breakage distribution functions (binary and multiple breakage) and various initial particle distributions are considered to obtain the new series solutions. The obtained results are successfully compared against finite volume method [26] solutions in terms of number density functions and their moments. The error between the exact and obtained series solutions is shown in plots and tables to confirm the applicability and accuracy of the proposed method.

History

Publication

Proceedings of Royal Society A: Mathematical, Physical and Engineering Sciences, 2023, 479, 20230567

Publisher

The Royal Society Publishing

Also affiliated with

  • Bernal Institute
  • MACSI - Mathematics Application Consortium for Science & Industry

Sustainable development goals

  • (4) Quality Education

Department or School

  • School of Engineering

Usage metrics

    University of Limerick

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC