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Knowledge Compilation with Empowerment

Lucas Bordeaux1 and Joao Marques-Silva1,2,3

1 Microsoft Research, Cambridge, UK
2 University College Dublin, Ireland
3 IST/INESC-ID, Lisbon, Portugal

Abstract. When we encode constraints as Boolean formulas, a natural ques-
tion is whether the encoding ensures a ”propagation completeness” property:
is the basic unit propagation mechanism able to deduce all the literals that are
logically valid? We consider the problem of automatically finding encodings
with this property. Our goal is to compile a naı̈ve definition of a constraint into
a good, propagation-complete encoding. Well-known Knowledge Compilation
techniques from AI can be used for this purpose, but the constraints for which
they can produce a polynomial size encoding are few. We show that the notion of
empowerment recently introduced in the SAT literature allows producing encod-
ings that are shorter than with previous techniques, sometimes exponentially.

1 Introduction

Modeling problems with constraints is as much an art as it is a science. Very often the
same relations between variables can be encoded in a wide range of possible ways.
Although semantically equivalent these various encodings may present dramatic differ-
ences in terms of complexity: some encodings are ”well-posed” in some sense, which
guarantees a tractable reasoning on the constraints, while some others are formulated in
a way that hinders the deduction mechanisms of constraint solvers.
The Question we investigate is how to automatize the search for such ”well-posed”
encodings: given a naı̈ve definition of a constraint in propositional logic, how do we
produce an equivalent, but ”well-posed”, encoding of the constraint? Both of the words
naı̈ve and well-posed require clarification. The specific notion of ”well-posed” we focus
on is defined precisely later in the paper by the property of propagation completeness,
which states that the simple unit propagation rule that is at the core of SAT solvers effec-
tively deduces all the literals that are logically entailed. The notion of ”naı̈ve” encoding
is unavoidably more subjective: by this we essentially mean a concise encoding that
logically captures the semantics of the constraint, but ignores any of the redundancies
or ”modeling tricks” that experts will usually add for performance reasons.

Producing propagation-complete encodings is an important question on which sig-
nificant prior work can be found. In particular the Knowledge Compilation literature
proposes a rich set of techniques for the preprocessing of logical formulas into a ”com-
piled” form that allows certain types of reasoning, including literal and clausal entail-
ment, to be done in polynomial time [16, 8]. In parallel, recent Constraint Programming
(CP) literature proposes propagation-complete SAT encodings of specific constraints
[2, 6, 15, 11, 4, 9, 4]. Bacchus [2] makes the connection between the two areas and was



the first to explicitly suggest the use of Knowledge Compilation techniques to automat-
ically obtain propagation-complete encodings of complex constraints.
Our Contribution in this paper is to relate clausal Knowledge compilation to the notion
of empowerment, recently introduced by [1, 14]. We show that generating empowering
redundant clauses is a key rewriting technique that can be used to generate ”useful”
redundant constraints that ultimately produce a propagation-complete formula. This
observation is simple and, in retrospect, natural, but we prove that restricting the clause
generation to empowering clauses can in some cases reduce exponentially the size of
compiled formulas, compared to previous CNF knowledge compilation techniques.
Overview of the Paper. We start by reviewing the notation and required material in
Section 2. Section 3 presents the notion of empowerment and studies the question of
how to find empowering clauses. Section 4 introduces and studies the technique of com-
pilation using empowerment, which is compared to prior CNF compilation techniques
in Section 5. Finally, Section 6 outlines a number of research directions.

2 Preliminaries

This section overviews the needed preliminary material and notation.
Resolution. The paper will mostly consider logical formulas in CNF (Conjunctive Nor-
mal Form). Recall that these formulas are conjunctions of clauses, each of which is a
disjunction of literals (variable or its negation). We write ϕ |= c to indicate that clause
c is a logical consequence of ϕ, i.e. all models of ϕ also satisfy c. We say that c is an
implicate of ϕ. We denote by ⊥ the empty clause; by vars(ϕ) the set of variables that
have an occurrence in a formula ϕ; by |c| the length (number of literals) of a clause c.

Propositional resolution is the well-known deduction rule that deduces from two
clauses of the form A∨x and ¬x∨B the consequence A∨B. Additionally to this rule
we implicitly use the rewriting rules of simplification (x∨x and x∧x rewrite to x) and
exchange (x∨y, resp. x∧y, rewrite to y∨x, resp. y∧x), which mean that conjunctions
and disjunctions are effectively treated as sets. Unit resolution, aka unit propagation,
is the special case where A or B is empty. We use the symbol ` for deduction using
resolution, with subscripts corresponding to restricted cases of resolution: in particular
given a CNF formula ϕ we write ϕ `1 l if the clause c can be deduced from ϕ using
unit propagation, as used in SAT solvers.
Propagation-Completeness is defined as follows:

Definition 1 (Propagation-Completeness). A formula ϕ is propagation-complete if
for any set of literals {l1, · · · , lk} any literal d that is logically entailed can be obtained
by unit propagation, i.e.,

if ϕ ∧ l1 ∧ · · · ∧ lk |= d then ϕ ∧ l1 ∧ · · · ∧ lk 1̀ d

In particular, if ϕ∧ l1 ∧ · · · ∧ lk is inconsistent, and ϕ is propagation-complete, unit
propagation deduces ⊥. Propagation completeness has been implicitly considered in
recent CP papers [10, 2, 6, 15, 11, 4] because of its connection to Domain Consistency
(aka Generalized Arc-Consistency): when we encode in SAT a constraint over some



Finite-Domain variables, if the encoding of the variables is a natural encoding with one
Boolean variable per value in the variable’s domain (as opposed to ”logarithmic encod-
ings” where b Booleans encode 2b possible values), and if the encoding of the constraint
is propagation-complete, then unit propagation on the SAT encoding effectively finds
the same implications as Domain Consistency.

Knowledge Compilation. We can now define more formally the problem we are con-
sidering throughout the paper:

Problem 1. Given a CNF formula ϕ, produce a ”compiled formula” that is equivalent
to ϕ and propagation-complete.

This question has been extensively studied in the Knowledge Compilation literature;
more precisely what is studied is usually a variant called clausal entailment (see, e.g.
[8]): given a clause c ≡ (l1 ∨ · · · ∨ lk), do we have ϕ |= c? It is easy to see that if a
formula is propagation-complete then clausal entailment on the formula can be done in
polynomial time as we can simply check whether ϕ∧¬l1 ∧ · · · ∧¬lk `1 ⊥. Conversely
if a polynomial-time algorithm (not necessarily based on unit propagation) exists for
clausal entailment then we can check efficiently whether ϕ ∧ l1 ∧ · · · ∧ lk |= d for
any literal d by checking whether (¬l1 ∨ · · · ∨ ¬lk ∨ d) is entailed. Clausal entailment
and propagation-completeness are therefore essentially equivalent, but tractable clausal
entailment can resort to any type of polynomial-time algorithm, while propagation-
completeness specifically focusses on unit propagation.

In general, if the formula ϕ to be compiled is arbitrary, the compilation process
hits fundamental complexity limits: clausal entailment, like other intractable problems,
is ”non-compilable” in general, unless NP ⊆ P/poly [7]; hence reaching propagation-
completeness requires in the worst case an exponentially large encoding. There are nev-
ertheless many specific constraints whose satisfiability and unit implication problems
are polynomial-time solvable, and for many of them (but not all, as shown in [5]!),
concise propagation-complete CNF encodings have been proposed. [6, 15, 11, 4, 9, 4].
Problem 1 asks how we automatically find such encodings.

3 Empowering Implicates

In this section we review the notion of empowering clause and relate it to knowledge
compilation. We next address the question: how do we compute empowering clauses
for a formula?

3.1 Empowerment

It is well-known that adding logically redundant constraints (in SAT: implicates) to a
problem can in some cases improve propagation but that not all redundant clauses are
useful. Consider for instance ϕ = {(¬x ∨ y), (¬y ∨ z)}. The clause (¬x ∨ z) is an
implicate, however this clause does not add anything that really benefits propagation:
from x we can deduce z and from ¬z we can deduce ¬x, with or without this clause.
The property that this clause is missing is empowerment [14]. This notion has been



introduced in a different setting, but we argue that it is the exact characterization of
”useful” clause. Implicates such as (¬x∨ z) that are useless are said to be absorbed by
the CNF ϕ.

Definition 2 (Empowerment [14]; Absorption [1]). Let ϕ be a CNF formula, and
c = (l1 ∨ · · · ∨ lk) be an implicate of ϕ. The clause c is empowering4 w.r.t. ϕ if one of
its literals li, called empowered literal, is such that:

ϕ ∧
∧

j∈1..k, j 6=i

¬lj 6 1̀ li.

c called absorbed by ϕ if it has no empowered literal.

Our first observation is that empowerment is intimately related to compilation:

Definition 3 (Closure under Empowerment; Completion). A formula ψ is said to be
closed under empowerment if it absorbs any implicate. Given a formula ϕ, let ψ be a
set of implicates of ϕ; if the formula ϕ ∪ ψ is closed under empowerment, then we say
that it is a completion of ϕ.

Proposition 1. A formula is closed under empowerment iff it is propagation-complete.

Given a CNF formula ϕ of size s (size here means the sum of clause lengths), and
a candidate clause c = (l1 ∨ · · · ∨ lk), there are two contexts in which it may be useful
to check whether c is an empowering implicate. If we do not know whether c is an
implicate, then checking whether it is is coNP-complete. In some other cases, c may
be known to be an implicate, for instance if it is obtained by application of steps of
propositional resolution. Checking whether it is empowering is in this case easier: we
simply have to check whether any of the lis (i ∈ 1..k) is obtained by propagation when
we assert the conjunction

∧
j∈1..k,j 6=i ¬lj . This can be done in time O(k · s) since it is

sufficient to run (and undo) k propagations.

3.2 Finding Empowering Implicates using QBF

Empowerment was introduced in the context of SAT solvers, and it was noted that learnt
clauses in DPLL solvers are in fact empowering [14, 1]. However the literature has
not, to our knowledge, proposed any complete method for finding empowering clauses.
Such a method should fail to return an empowering implicate only when the formula is
proved to be propagation-complete. We propose such a method based on an encoding to
Quantified Boolean Formulae (QBF). The generated Quantified Boolean Formula asks
whether there exists a clause that is a valid implicate and that is empowering. This QBF
encoding is described below.

A set of variables X is assumed, with |X| = n, X = {x1, . . . , xn}. Literals are
represented as xpi , where xi ∈ X , p ∈ {0, 1}, xi ≡ x1i and ¬xi ≡ x0i . Essentially, p

4 Reference [14] uses the term 1-empowering, but we drop the 1- prefix for simplicitiy. Also
we use in fact the original formulation from a AAAI conference paper that precedes [14]: for
technical reasons [14] adds the extra condition ϕ ∧

∧
j 6=i ¬lj 6 1̀ ⊥, which we do not need.



denotes the truth value of xi that satisfies the literal associated with xpi . Furthermore,
let T (xpi ) denote the clauses satisfied by xi when assigned value p ∈ {0, 1}.

Consider a CNF formula ϕ and a clause c. Define ϕa = ϕ ∪ {¬lc : lc ∈ c} and
ϕc = ϕa \ {¬l}, for a given literal l ∈ c. A clause c is 1-empowering for ϕ if there
exists l ∈ c such that: (i) ϕ |= c; (ii) ϕc 6`1 ⊥; and (iii) ϕc 6`1 l.

The identification of a 1-empowering clause c consists of the following main steps:
(i) select the literals of clause c, among all possible sets of literals; and (ii) validate the
conditions of Definition 2 for clause c. The configuration of clause c is done through
a set of auxiliary variables S = {spi |xi ∈ X ∧ p ∈ {0, 1}}. Clause c is defined as
follows: c = {l01, l11, l02, l12, . . . , l0n, l1n}, where lpi ↔ xpi ∧ s

p
i . Moreover, (¬s0i ∨ ¬s1i )

holds for i = 1, . . . , n. A complete assignment to the variables in set S decides which
literals actualy integrate clause c.

Given the definition of set S, the model outlined above can be refined as follows:

∃S.(ϕ |= c) ∧ (ϕc 6`1 ⊥) ∧ (ϕc 6`1 l) (1)

which captures the conditions of Definition 2. In the remainder of this section, the com-
plete QBF is derived by specifying the following predicates (each associated with one
of the conditions of 1-empowering clause):

∃S.Unsat(ϕa) ∧ ProperUPConfig(ϕc) ∧
∨
l∈c

NonUPImplied(ϕc, l) (2)

where Unsat(ϕa) holds if ϕa is unsatisfiable, ProperUPConfig(ϕc) holds if unit prop-
agation (UP) on ϕc is non-inconsistent, and NonUPImplied(ϕc, l) holds if l is not im-
plied by unit propagation. Predicate Unsat(ϕa) is represented by ∀X.¬ϕa(X). The
other two predicates require modeling the proper outcomes of unit propagation (UP) as
a propositional formula.

The selection of the set of variables to be declared assigned by unit propagation is
achieved through a few sets of auxiliary variables. The first set U , is defined as follows:
U = {upi |xi ∈ X ∧ p ∈ {0, 1}}, where upi is true iff xi ∈ X takes value p ∈ {0, 1} by
unit propagation. Clearly, (¬u0i ∨ ¬u1i ) holds for all 1 ≤ i ≤ n. Also, if u0i = u1i = 0
then xi is unassigned by unit propagation. Moreover, upi,d denotes whether xi takes
value p in no more than d unit propagation steps. The consistent assignments to upi,d are
defined recursively as follows: (i) upi,0 = 1 iff (xpi ) is a unit clause; and (ii) for d > 0,
upi,d = 1 if xpi was already set to 1 at earlier propagation stages than d, or if there exists
a clause ct ∈ ϕc with all literals but xpi assigned value 0 in no more than d − 1 unit
propagation steps. Formally,

upi,0 = 1 if (xpi ) ∈ ϕc
upi,0 = 0 if (xpi ) 6∈ ϕc

upi,d = upi,d−1 ∨
∨

ct∈T (xp
i )

∧
xq
j∈ct

xq
j 6=x

p
i

u1−qj,d−1 for d > 0 (3)

For simplicity of notation, in the rest of the section we simply denote by upi the variables
upi,n, that represent the state of each xi at the end of propagation, i.e. when d = n (last
”propagation level”).



Let ϕu,d(upi ) denote the set of clauses from (3). Then, the predicate ProperUP(upi )
is given by the conjunction of ϕu,d(upi ), (¬u0i ∨¬u1i ), (u

p
i,d−1→upi,d), with 1 ≤ d ≤ n,

and (upi ↔upi,n).
For a given clause ct, the predicate SAT(ct) is given by (∨xp

i∈ctu
p
i ). After consistent

unit propagation, all clauses must either be satisfied or non-unit. Define vi to be true iff
xi is unassigned, i.e. vi↔(¬u0i ∧ ¬u1i ). Then the NonUnit(ct) predicate is defined by
(
∑
xp
i∈ct

vi ≥ 2).
The predicate ProperUPConfig(ϕc, U) can be defined as follows:∧

1≤i≤n
p∈{0,1}

ProperUP(upi ) ∧
∧
ct∈ϕc

(SAT(ct) ∨ NonUnit(ct)) (4)

The existence of a proper UP configuration is then given by: ∃U.ProperUPConfig(ϕc, U).
Finally, assuming literal l corresponds to xpk, predicate NonUPImplied(ϕc, xpk, U) is
defined as follows: ProperUPConfig(ϕc, U)→¬upk, i.e. for any non-inconsistent unit
propagation xpk remains unassigned. Thus, the condition that xk is not implied, is given
by ∀U.NonUPImplied(ϕc, l, U).

Proposition 2. Given a formula ϕ, the question: is there a clause c that is an empow-
ering implicate of ϕ? is polynomial-time reducible to a QBF formula with quantifier
alternation ∃∀.

Proof. See QBF derivation above.

We also note that the QBF encoding can easily be tuned to express the existence of
empowering clauses of bounded length: this amounts to constraining the length of the
desired clause in the encoding.

4 Compilation by Iterative Empowerment

The most natural approach to knowledge compilation using empowering clauses is to it-
eratively add empowering clauses to the formula until it ultimately becomes propagation-
complete. We call this approach compilation by iterative empowerment. Here we study
this approach and focus in particular on a disciplined approach where empowering
clauses are introduced by increasing length.

4.1 Compilation Sequences

Knowledge compilation by empowering implicate generation is highly dependent on
the order in which empowering clauses are generated. The notion of compilation se-
quence captures this ordering:

Definition 4. Let ϕ be a CNF formula. A compilation sequence is a sequence of clauses
[ϕ; c1; · · · ; ck] such that:

– Each clause ci for 1 ≤ i ≤ k is an implicate of ϕ that is empowering wr.t. the
partially compiled formula ϕ ∧ c1 ∧ · · · ∧ ci−1 ;



– ϕ ∧ c1 ∧ · · · ∧ ck is ultimately propagation-complete.

Example 1. Consider the formula: ϕ ≡ {(a ∨ b), (¬a ∨ x), (¬a ∨ y), (¬b ∨ x), (¬b ∨
y), (¬x∨y), (¬y∨x)}. There are two possible compilation sequences for this formula:
[ϕ; (x)] and [ϕ; (y)]. In other words we may start by adding the empowering implicate
(x), in which case (y) becomes deducible by unit propagation and therefore is not an
empowering clause; or we may start by adding (y) in which case (x) is not empowering.

4.2 Clause Deprecation

Being empowering w.r.t. ϕ∧ c1 ∧ · · · ∧ ci−1 does not, in general, guarantee that ci will
remain empowering w.r.t. to the fully compiled formula. One issue is that as we generate
empowering clauses sequentially, some clauses created at an earlier stage may become
non-empowering later as more clauses are added. We call this clause deprecation:

Definition 5 (Clause Deprecation). In a compilation sequence [ϕ; c1; · · · ; ck] we say
that a clause ci is deprecated by the addition of clause cj (j > i) if ci is empowering
w.r.t ϕ ∧

∧
h∈1..j−1,h 6=i ch and non-empowering w.r.t. ϕ ∧

∧
h∈1..j,h 6=i ch.

Example 2. Consider the formula: ϕ ≡ {(a ∨ b), (¬a ∨ x), (¬a ∨ y), (¬b ∨ x), (¬b ∨
y), (¬x ∨ y)}. The two possible compilation sequences are: [ϕ; (y); (x)] and [ϕ; (x)].
In the first sequence, (y) is empowering w.r.t. ϕ but is not empowering w.r.t. ϕ ∧ (x),
i.e. becomes deprecated by the addition of clause (x).

In extreme examples, some poorly selected sequences can ultimately contain expo-
nentially many deprecated clauses, as shown in the following example.

Example 3. Consider the following formulas parameterized by a size m:

∧
p

(
y ∨

∨
h

xph

)
∧

∧
h

∧
p

∧
p′>p

(y ∨ ¬xph ∨ ¬xp′h)

where p ranges over 1..m and h ranges over 1..m− 1. (These formulas are a variant of
the well-known Pigeon-Hole Principle (PHP) formulas encoding y ∨ PHPm.) It is clear
that for this formula we can generate exponentially many clauses, and in particular
many empowering ones, whereas the unit clause (y) is indeed the only meaningful im-
plicate. Specifically, a possible compilation sequence starts by ϕ, then adds all clauses
of the form

(
y ∨

∨
p∈1..m−1 ¬xp,δ(p)

)
, for all bijections δ from 1 · · ·m− 1 onto itself

(i.e. permutations); then adds (y). All clauses are empowering at the time where they
are added. Yet adding the final clause (y) deprecates all the previous clauses.

Example 3 shows that generating a short (here, unit) empowering clause can some-
times prevent the creation of many more empowering clauses. This suggests a strategy
of length-increasing iterative empowerment, detailed next.



function length increasing empower(ϕ):
let ψ := ∅
for L from 1 to width(ϕ)

while there exists a clause c of length L that is empowering w.r.t. ϕ ∪ ψ
ψ := ψ ∪ {c}

% minimization code optionally goes here
return ϕ ∪ ψ

function minimize(ϕ):
let ψ := ϕ
foreach clause c in ψ % arbitrary order

if c is absorbed by ψ \ {c}
ψ := ψ \ {c}

return ψ

Fig. 1. Algorithms: length increasing empower takes a CNF ϕ and returns a completion
of it; minimize takes a propagation-complete CNF ϕ and returns a subset of it that is
equivalent, propagation-complete, and minimal.

4.3 Length-Increasing Iterative Empowerment

We now consider what happens if we generate clauses by increasing length: we first
saturate the formula under empowering clauses of length 1; only then do we consider
length 2; and so forth. This is shown as Algorithm length increasing empower in Fig. 1.
The algorithm is similar to the simple width-increasing algorithm resolution proposed
in e.g. [3], but (1) only generates clauses that are empowering, and (2) exhaustively
checks that no implicate of length L exists before incrementing L. The latter test can
be done by a width-bounded QBF encoding as suggested in the previous section. This
algorithm is non-deterministic in that there are many possible choices in the selection
of the empowering clause at any stage. The sequences of implicates it generates can be
characterized as follows:

Definition 6 (Length-Increasing Compilation Sequence). A compilation sequence
[ϕ; c1; · · · ; ck] is length-increasing if for every i ∈ 1..k we have that all implicates
of length strictly less than |ci| are absorbed by ϕ ∧ c1 ∧ · · · ∧ ci−1.

A key property of compilation by length-increasing iterative empowerment is that
it limits the effects of deprecation, in the following sense:

Proposition 3. In a length-increasing sequence, a clause of length b never deprecates
a clause of length a < b.

4.4 Minimality

It may be desirable in some cases to compute propagation-complete formulas that are
minimal, where removing any clause would cause the formula not to be propagation-
complete anymore.



Definition 7 (Minimal propagation-complete formula). A propagation-complete CNF
formula {c1 · · · cm} is minimal if no ci is absorbed by the set of remaining clauses, i.e.
{cj : j 6= i}.

Example 2 shows that length-increasing iterative empowerment does not necessar-
ily lead to formulas that are minimal: deprecation can happen between generated impli-
cates of the same length. Minimizing a propagation-complete formula can be done by
simply checking one by one, in some arbitrary order, whether any clause is absorbed
by the rest of the formula, as shown in Algorithm minimize of Fig. 1. If a clause c
is verified to be empowering during the execution of the algorithm, it is clear that it
will remain empowering at the end of the execution, where more clauses have been
removed; therefore considering each clause once is enough. Minimizing a formula of
length s (counted in sum of clause lengths) takes time O(s2) since we need to do/undo
one propagation for each literal of every clause.

To construct a minimal propagation-complete formula using the length-increasing
compilation approach, it is possible to interleave the generation of empowering clauses
of every length with minimization steps. In Algorithm length increasing empower of
Fig. 1 the minimization code can be added in the commented area. Because of Proposi-
tion 3, it is sufficient, once the generation of empowering implicates of a certain length
L has completed, to verify the empowerment of clauses of length L, i.e. the foreach
loop of Algorithm minimize can be restricted to clauses whose length is L.

5 Iterative Empowerment versus Prime Implicate Saturation

We now study compilation by iterative empowerment and compare it against prior
implicate-based approaches to knowledge compilation. We focus for most of our re-
sults on the length-increasing compilation scheme, but do not assume minimality. Our
main point is that it provides a strictly more ”succinct” compilation language than prior
compilation methods by prime implicates, where succinctness is defined as in [8].

5.1 Previous Compilation Schemes

A well-known way to obtain a propagation-complete formula is to saturate it by prime
implicates, as was proposed by, e.g. [16, 13] and suggested for the encoding of con-
straints by [2]. An implicate of a formula ϕ is a clause c that is a valid consequence, i.e.
ϕ |= c. An implicate is prime if it is not subsumed by another implicate, i.e., there is no
implicate c′ that contains a strict subset of the literals of c. We denote by prime(ϕ) the
set of prime implicates of a formula ϕ. (This set is uniquely defined.)

It is known that prime implicate generation can generate clauses that are useless for
propagation-completeness; for instance from the formula ϕ = (¬x ∨ y), (¬y ∨ z) the
absorbed clause (¬x∨z) is a prime implicate. Heuristics have been proposed to restrict
the number of absorbed clauses, in particular based on the notion of merge resolution.
When resolving two clausesA∨x and ¬x∨B, the resolution step is called non-merge if
vars(A)∩ vars(B) = ∅, and merge otherwise. Several optimizations to prime implicate
generation have been proposed in [16]; the central idea is to avoid adding to the formula
some implicates that are generated by non-merge resolution.



We compare iterative empowerment to this approach. Later approaches to prime
implicate generation have been proposed, for instance [12], but these approaches depart
from explicit CNF generation, while it is our aim to produce CNF encodings amenable
to SAT solving. ([12] uses, specifically, a compact clause representation with BDDs).

5.2 Iterative Empowerment versus Prime Implicates

We first note that length-increasing compilation sequences can never generate more
clauses than prime implicate generation, as they only contain prime implicates. We
then show that compilation by saturation under empowering clauses can in some cases
be exponentially more compact than approaches based on prime implicate generation.

Proposition 4. All implicates generated in a length-increasing compilation sequence
are prime.

Proof. Consider a sequence [ϕ; c1; · · · ; ck], and clauses ci and cj . We assume that ci
subsumes cj and show a contradition. Since the literals of ci are a strict subset of those
of cj , we have |ci| < |cj | and i < j, i.e. clause cj is generated after ci in the sequence.
But cj is not empowering w.r.t. the formula that already includes ci: whenever cj be-
comes unit, ci either also becomes unit, or becomes inconsistent; in both cases no useful
new literal can be inferred from cj .

A class of formulas that exhibit an exponential separation between prime implicate
saturation and iterative empowerment is the so-called EVEN formulas, introduced next.
(Comments on the right-hand side of the formula explain the meaning of each block of
clauses in this formula.) These are CNF encodings of the formula x1 ⊕ · · · ⊕ xn = 0,
true when the number of 1s is even.

Definition 8 (EVEN Formulas). We denote by EVENn the following formula over the
sets of variables X = {x1 · · ·xn} and X = {y1 · · · yn}:

(¬x1 ∨ y1) ∧ (¬y1 ∨ x1) ”y1 = x1”

∧
∧
i∈2..n


(¬yi ∨ yi−1 ∨ xi)∧
(¬yi ∨ ¬yi−1 ∨ ¬xi)∧
(yi ∨ ¬yi−1 ∨ xi)∧
(yi ∨ yi−1 ∨ ¬xi)

 ”yi = yi−1 ⊕ xi”

∧ (yn) ”output gate yn is true”

Proposition 5. The EVENn formulas are closed under empowerment yet have expo-
nentially many prime implicates.

Proof. We first note that the constraint hyper-graph of these formulas is Berge-acyclic.
It is well-known that for acyclic constraint networks achieving arc consistency for each
constraint of the hyper-graph is enough to achieve arc-consistency for the whole net-
work. It follows that the formula is propagation-complete; In other words any implicate
is absorbed. Now there exist an exponential number of prime implicates: (1) any clause
over the variables {x1 · · ·xn} that has an odd number of negative literals is an impli-
cate. (2) these implicates are prime: if we remove any of their literals we obtain an
invalid clause. (3) there are 2n−1 such clauses.



5.3 Iterative Empowerment versus Merge Resolution

We next consider the optimizations to prime implicate generation based on merge reso-
lution [16]. The goal of these methods was to find a subset of the prime implicates that
remains propagation-complete. However these previous approaches did not formulate
the notion of empowerment, and the question is to compare them with iterative empow-
erment. We show that in some cases, those compilation schemes, that discard clauses
that are produced by non-merge resolution steps, can still generate exponentially many
non-empowering clauses. This is exhibited by the following class of formulas.

Definition 9 (MERGE-EVEN formulas). We denote by MERGE-EVENn the variant of
EVEN in which every clause receives an additional positive literal f , such that f 6∈
X ∪ Y ; i.e. MERGE-EVENn is the set of clauses {(f ∨ c) : c ∈ EVENn}.

The set of solutions of MERGE-EVENn is exactly the union of: (1) all assignments
where f is true (with any value assigned elsewhere); (2) all assignments where f is
false and EVENn holds.

Proposition 6. The set of prime implicates of MERGE-EVENn is: {(f ∨ A) : A ∈
prime( EVENn)}

Proposition 7. The formula EVENn is closed under empowerment, but has exponen-
tially many prime implicates; furthermore all of these implicates are produced by merge-
resolution.

Proof. Assume the existence of a non-empowering prime implicate of MERGE-EVEN.
It is a clause of the form (f ∨A∨ l), not subsumed by any clause of MERGE-EVEN, and
where literal l is not obtained from MERGE-EVEN by unit propagation when f is false
and all literals in A are false. When f is set to false the formula simplifies to EVEN,
therefore it is also the case that l is not obtained from EVEN when all literals in A are
false. This implies that (A∨ l) is an empowering clause of EVEN not subsumed by any
clause in it, which contradicts Proposition 5.

We now show that all the resolvents applied in the compilation are Merge. All
clauses of EVEN include a positive occurrence of f . Any resolution on two such clauses
is a merge resolution operation and produces in a clause that also includes a positive oc-
currence of f . Therefore all clauses in any resolution proof will include only clauses
with positive occurrence of f , and make us of merge resolution exclusively.

Note also that in formula MERGE-EVEN the merge literal is always f . This means
that the optimization of algorithm FPI1 of [16] do not apply and that this algorithm also
generates exponentially many absorbed implicates.

6 Conclusion and Perspectives

Clausal (CNF) formalisms played an important role in early Knowledge Compilation
work, but more recent work has favoured non-clausal formalisms that are in many re-
spects more expressive [8]. In our view clausal Knowledge Compilation remains im-
portant because of its connections to propagation-complete encodings, and to our initial
Question (formalized as Problem 1). Our main findings in this paper are the following:



– The notion of empowerment of [1, 14] sheds a new light on clausal Knowledge
Compilation: several heuristics had previously been proposed to limit the ”useless”
redundant constraints generated by classical prime implicate methods; but they did
not, to our knowledge, explicitly define ”useless” — it is now clear that empower-
ment is the desired property of implicates used in compilation.

– In particular we showed that length-increasing empowerment is a knowledge com-
pilation scheme that has many appealing features in terms of limited deprecation
and easier minimization, connection to treewidth, and comparison with other prime
implicate generation schemes.
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