University of Limerick
Browse

Multi-agent multi-issue negotiations with incomplete information: a genetic algorithm based on discrete surrogate approach

Download (298.23 kB)
conference contribution
posted on 2013-08-09, 08:15 authored by Ahmed Kattan, Ong Yew-Soon, Edgar Galván-López
In this paper we present a negotiation agent based on Genetic Algorithm (GA) and Surrogate Modelling for a multi-player multi-issue negotiation model under incomplete information scenarios to solve a resource-allocation problem. We consider a multi-lateral negotiation protocol by which agents make offers sequentially in consecutive rounds until the deadline is reached. Agents’ offers represent suggestions about how to divide the available resources among all agents participating in the negotiation. Each agent may “Accept” or “Reject” the offers made by its opponents through selecting the “Accept” or “Reject” option. The GA is used to explore the space of offers and surrogates used to model the behaviours of individual opponent agents for enhanced genetic evolution of offers that is agreeable upon all agents. The GA population comprises of solution individuals that are formulated as matrices where a specialised three different search operators that take the matrix representation into considerations are considered. Experimental studies of the proposed negotiation agent under different scenarios demonstrated that the negotiations by the agents completed in agreement before the deadline is reached, while at the same time, maximising profits.

History

Publication

Congress on Evolutionary Computation;pp. 2556-2563

Publisher

IEEE Computer Society

Note

peer-reviewed

Other Funding information

SFI

Rights

“© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.”

Language

English

Usage metrics

    University of Limerick

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC