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ABSTRACT
Boolean function bi-decomposition is pervasive in logic syn-
thesis. Bi-decomposition entails the decomposition of a Boo-
lean function into two other simpler functions connected by
a simple two-input gate. Existing solutions are based ei-
ther on Binary Decision Diagrams (BDDs) or Boolean Sat-
isfiability (SAT). Furthermore, the partition of the input
set of variables is either assumed, or an automatic deriva-
tion is required. Most recent work on bi-decomposition
proposed the use of Minimally Unsatisfiable Subformulas
(MUSes) or Quantified Boolean Formulas (QBF) for com-
puting, respectively, variable partitions of either approxi-
mate or optimum quality. This paper develops new group-
oriented MUS-based models for addressing both the per-
formance and the quality of bi-decompositions. The paper
shows that approximate MUS search can be guided by the
quality of well-known metrics. In addition, the paper im-
proves on recent high-performance approximate models and
versatile exact models, to address the practical requirements
of bi-decomposition in logic synthesis. Experimental results
obtained on representative benchmarks demonstrate signif-
icant improvement in performance as well as in the quality
of decompositions.

Categories and Subject Descriptors
B6.3 [Logic Design]: Design Aids—automatic synthesis

General Terms
Algorithms, Design

Keywords
bi-decomposition, logic synthesis, satisfiability

1. INTRODUCTION
Boolean function bi-decomposition is ubiquitous in logic

synthesis. It is arguably the most widely used form of func-
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tional decomposition. Bi-decomposition [5–7,12,14,15] con-
sists of decomposing Boolean function f(X) into the form of
f(X) = h(fA(XA, XC), fB(XB , XC)), under variable parti-
tionX = {XA|XB |XC}, where fA(XA, XC) and fB(XB , XC)
are functions simpler than f(X). In practice variable parti-
tions are often not available, and so automatic derivation of
variable partitions is required.

The quality of bi-decomposition is mainly determined by
the quality of variable partitions, as an optimal solution re-
sults in simpler sub-functions fA and fB . Typically, two
relative quality metrics [5,6,12,13], namely disjointness and
balancedness, are used to evaluate the resulting variable par-
titions, for which smaller values represent preferred bi-de-
compositions. In practice, disjointness is in general pre-
ferred [5, 12], since it represents the reduction of common
variables to fA and fB , which in turn often simplifies the
resulting Boolean function. Similar to recent work on func-
tional decomposition [5,6,12,13], this paper addresses these
two relative metrics, namely disjointness and balancedness.
Absolute quality metrics are an alternative to relative quality
metrics, and include total variable count (Σ) and maximum
partition size (∆) [7]. Nevertheless, absolute quality metrics
scale worse with the number of inputs [7].

Research on decomposition of Boolean functions can be
traced back to 1950s [2, 8]. Traditional approaches [4, 11,
15,16] are based on BDDs for bi-decomposing Boolean net-
works. However, BDDs impose severe constraints on the
number of input variables functions can have. Also, ap-
proaches based on BDD-based bi-decomposition lack mech-
anisms for deriving variable partitions; hence the partition
of the input set of variables needs to be assumed. Moreover,
it is also generally accepted that BDDs do not scale for large
Boolean functions. As a result, recent work [5,6,12,13] pro-
posed SAT-based models for addressing performance and
quality in decompositions.

SAT-based bi-decomposition has a number of advantages
and also disadvantages. In terms of the quality of computed
partitions, SAT-based models can either be approximate or
exact. Approximate solutions [5, 12] proposed Boolean Sat-
isfiability (SAT) and Minimally Unsatisfiable Subformulas
(MUS) for manipulating Boolean functions. These approa-
ches achieve significant performance gains. However, the ap-
proximate models find solutions with brute-force search [12],
heuristic shuffling of CNF IDs [12], heuristic searching of
seed variable partitions [5] and interfacing of standalone
MUS solvers [5]. These solutions prevent controllable qual-
ity in practice. In contrast, exact models [6] use QBF for
manipulating Boolean functions and constraints. This re-



sults in guaranteed quality of bi-decompositions. However,
solving the QBF formulas representing the exact models can
have significant computational cost.
This paper develops extensions to earlier work on ap-

proximate [5,12] and exact [6] SAT-based bi-decomposition,
and proposes a new heuristic model. The paper has three
main contributions. First, the paper develops a new ap-
proximate Group-oriented MUS-based model that in prac-
tice yields good quality metrics. This new model offers sig-
nificant performance improvement over recently proposed
exact solutions [6] as well as to the majority of approx-
imate solutions [5, 12]. Moreover, this new model yields
bi-decompositions of quality better than existing approx-
imate models [5, 12]. The second contribution addresses
techniques for achieving target quality metrics with exact
bi-decomposition models [6]. The third contribution pro-
poses a flow for aggregating all existing bi-decomposition
models [5, 6, 12], as well as the new models, with the pur-
pose of achieving a wide range of trade-offs between quality
of decomposition metrics and runtime performance.
The paper is organized as follows. Section 2 provides the

preliminaries. Section 3 reviews Satisfiability-based models
for bi-decomposition. Section 4 proposes the new models
and the practical extensions. Section 5 presents the exper-
imental results. Finally, section 6 concludes the paper and
outlines future work.

2. PRELIMINARIES
Variables are represented by set X = {x1, x2, . . . , xn}.

The cardinality of X is denoted as ||X||. A partition of a set
X into Xi ⊆ X for i = 1, . . . , k (with Xi

⋂
Xj = ∅, i 6= j and

⋃

i
Xi = X) is denoted by {X1|X2| . . . |Xk}. A Completely

Specified Function (CSF) is denoted by f : Bn → B. Similar
to the recent work [5, 6, 12], this paper assumes CSFs.

2.1 Boolean Function Bi-Decomposition
Definition 1. Bi-decomposition [15] for Completely Spec-

ified Function (CSF) f(X) consists of decomposing f(X)
under variable partition X = {XA|XB |XC}, into the form
of f(X) = fA(XA, XC) <OP> fB(XB , XC), where <OP>
is a binary operator, typically OR, AND or XOR.

This paper addressesOR,AND andXOR bi-decomposition
because these three types form other types of bi-decomposi-
tion [12]. Bi-decomposition is termed disjoint if ||XC || = 0.
A partition ofX is trivial ifX = XA

⋃
XC orX = XB

⋃
XC

holds. Similar to earlier work [5, 6, 12, 13], this paper ad-
dresses non-trivial bi-decompositions.

2.2 Boolean Satisfiability
A formula in Conjunctive Normal Form (CNF) F is de-

fined as a set of sets of literals defined on X, representing
a conjunction of disjunctions of literals. A literal is either
a variable or its complement. Each set of literals is referred
to as a clause c. Moreover, it is assumed that each clause is
non-tautological. Additional SAT definitions can be found
in standard references (e.g. [3]).

Definition 2 (MUS). [5] M ⊆ F is a Minimally
Unsatisfiable Subformula (MUS) iff M is unsatisfiable and
∀c∈M, M\ {c} is satisfiable.

Definition 3 (Group-oriented MUS). (E.g. [5])
Given an unsatisfiable CNF formula C = D∪

⋃

G∈G G, where

G = {G1, . . . ,Gk}, and D and each Gi are disjoint sets of
clauses, a group-oriented MUS of C is a subset G′ of G such
that D ∪

⋃

G∈G′ G is unsatisfiable and, for every G′′ ⊂ G′,
we have that D ∪

⋃

G∈G′′ G is satisfiable.

2.3 Quality Metrics
The quality of variable partitions mainly impacts the qual-

ity of bi-decomposition [5–7,12], and indirectly impacts the
decomposed network, e.g. delay, area and power consump-
tion [7]. Similar to [5, 6, 12, 13], this paper measures the
quality of variable partitions through two relative quality
metrics, namely disjointness and balancedness. Assume a
variable partition {XA|XB |XC} for f(X), where XA, XB

and XC are the sets of the input variables to decomposition
functions fA, fB and common to fA and fB , respectively.

Definition 4 (Disjointness). ǫD = ||XC ||
||X||

denotes the

ratio of the number of common variables to inputs. A value
of ǫD close to 0 is preferred, as ǫD = 0 represents a disjoint
bi-decomposition.

Definition 5 (Balancedness). ǫB =

∣
∣||XA||−||XB ||

∣
∣

||X||

denotes the absolute size difference between XA and XB.
ǫB = 0 represents a balanced variable partition.

In practice, disjointness is preferred since a lower value rep-
resents a smaller number of shared input variables of the
resulting decomposed circuit that typically has smaller area
and power footprint. A lower balancedness typically corre-
sponds to smaller delay of the decomposed network.

3. SATISFIABILITY-BASED MODELS
Traditional bi-decomposition algorithms [4, 11, 15, 16] are

based on BDDs. This can have significant impact on dif-
ferent aspects of logic synthesis (see [5] for a review). Re-
cent work on bi-decomposition mainly focuses on the perfor-
mance of models when decomposing large functions [5, 12]
as well as the quality of the bi-decompositions [6]. This sec-
tion briefly reviews Satisfiability-based models in accordance
with the precision of targeted quality, namely approximate
and exact.

3.1 Approximate Models
The primary objective of using approximate models is to

achieve good performance with approximate quality.

SAT-Based and MUS-Based Models. The approximate
models are either SAT-based [12] or MUS-based [5]. These
models provide a collection of solutions to the OR, AND and
XOR bi-decompositions under known and unknown parti-
tion of variables. In practice, the partitions of variables are
often unknown, and therefore, an automatic derivation of
partitions is required.

A distinct feature provided by SAT-based models is that
they are capable of automatically deriving variable parti-
tions. The main difference between these SAT-based ap-
proaches is in the underlying representation of the constraints
for modeling the bi-decomposition, including SAT [12], plain-
MUS [5] and group-oriented-MUS [5]. The performance
of these models is determined by (1) the modeling of con-
straints, and (2) how the constraints are solved. For exam-
ple, the group-oriented MUS model [5] exhibits remarkably
good performance when partitioning input variables for bi-
decompositions. Consider the explicit groups of clauses for



the modeling of bi-decomposition [5]:

D = {f(X) ∧ ¬f(X ′) ∧ ¬f(X ′′)}

Gia = {(xi ≡ x
′
i)},Gib = {(xi ≡ x

′′
i )}

(1)

Proposition 1. [5] A completely specified function f(X)
can be decomposed into fA(XA, XC)∨fB(XB , XC) for some
functions fA and fB if and only if the Boolean formula of
the set of clauses C, with

C = D ∪ GA ∪ GB (2)

is unsatisfiable under a non-trivial partition, where the sub-
set GA ⊂ {

⋃

i Gia}, the sub-set GB ⊂ {
⋃

i Gib}.

Notice that D contains clauses for representing the target
Boolean function and its two complements. However, D
does not contribute to the size of a group-oriented MUS,
and can hence be viewed as don’t care conditions w.r.t the
size of the modeling. This in part motivates the gain of
performance and this concept is adapted for the new models
proposed in this paper.
The partitioning of variables occupies most of the run time

in bi-decomposition [5–7, 12]. Essentially, the derivation of
partitions is the process of switching the input variables be-
tween the two partitions. Switching of variables can be cap-
tured by selecting the groups of the input variables.

3.2 Exact Models
Exact models [6] provide controllable quality of bi-decom-

position for various optimizations in logic synthesis. Ex-
isting exact solutions are based on QBF [6], and address
the problem of computing bi-decompositions with optimum
variable partitions. The optimality of achieved variable par-
titions is measured in terms of the existing metrics, namely
disjointness and balancedness. Besides the novel QBF for-
mulation, [6] shows how bi-decompositions can be computed
with optimum values for target metrics. These QBF-based
models guarantee the optimum quality of variable partitions.
Nevertheless, exact models incur a performance penalty when
compared with approximate models, in particular, with group-
oriented MUS-based models [5].

4. NEW MODELS AND EXTENSIONS
Algorithm 1 proposes Quality-Guided-Group-MUS that

targets high quality and efficient bi-decomposition.

4.1 OR Bi-Decomposition
Group-oriented MUS model [5] shows remarkably good

performance, and it is used as the underlying construction
in Algorithm 1. Similar to [5], during MUS search, the group
D of clauses remains unchanged and only the groups

⋃

i GiA

and
⋃

i
GiB of clauses for variable partitions are considered:

F = D
⋃

i

{

GiA

︷ ︸︸ ︷

((xi ≡ x
′
i)∧

GiB

︷ ︸︸ ︷

(xi ≡ x
′′
i )

︸ ︷︷ ︸

GiC

)} (3)

Observe that the subset C′ = D ∪
⋃

i G
′
ia ∪

⋃

i G
′
ib

computed
from (3) indicates the variable partitions. G′

ia and G′
ib

are
defined as follows: ((G′

ia ≡ Gia), (G
′
ib

≡ Gib)) = (1,1), (1,0),
(0,1), and (0,0) denote xi ∈ XC , xi ∈ XB , xi ∈ XA and xi

can either be in XA or XB , respectively.

Algorithm 1: Quality-Guided-Group-MUS (F ,X)

Input: F — UNSAT formula of a seed variable partition
Input: X — input variables of Boolean function f(X)
Output: M — MUS with approximate good quality
Data: i← 2 — do not involve the two seed variables

1 for i ≤ ||X|| do
2 if DIFF(F) ≥ 0 then

3 F ′ ← INCREASE XB DECREASE XC(&F, i)

4 if SAT SOLVE(F ′) == UNSAT then

5 F ← F ′

6 else

7 F ′ ← INCREASE XA DECREASE XC(&F, i)

8 if SAT SOLVE(F ′) == UNSAT then

9 F ← F ′

10 end

11 end

12 else

13 . . .

14 end

15 i← i + 1

16 end

17 M← F

4.1.1 Approximating Optimum Balancedness
The refinement of a quality metric initially starts from

an UNSAT formula of a seed variable partition [12], where
the set XA and the set XB each takes at least one variable.
The improvement of balancedness essentially corresponds to
reducing the size difference between XA and XB :

DIFFAB = ||XA|| − ||XB || (4)

If (4) results in a non-negative value (line 2), then the size
(or cardinality) of set XB is increased whereas the size of XC

is thereby reduced (line 3). This behaviour is captured by
deleting the clauses of one group GiB of (3), which produces
a formula F ′ with reduced size (line 3). The resulting F ′ can
be UNSAT (line 4) and then be substituted for the original
F (line 5). As a result, the balancedness is improved by
the guide of the cost function (4). In contrast, formula F ′

can be SAT which implies an unchanged F at the current
step, since F is only used as a constant reference in function
INCREASE XB DECREASE XC(. . . ) (line 3).

4.1.2 Approximating Optimum Disjointness
Observe that achieving optimum Disjointness consists of

reducing the size of XC . Such a reduction can either be
done by removing the group GiA or the group GiB from for-
mula (3). As a result, if the previous steps (line 3 to 5) failed
to produce a sub-formula F ′ with the deletion of group GiB

(line 3), the deletion of group GiA is thus performed (line
7) and, followed by a SAT checking (line 8). This greedy
scheme of removing either group GiA or group GiB (line 2 to
14) insists on an improvement of disjointness by looking for
an UNSAT subformula F ′ with reduced size. Algorithm 1
also considers the case when DIFFAB has negative value.
This situation is similar to previous ones, and can be imple-
mented by replicating lines 2-11 to lines 12-14, but swapping
lines 3 and 7. In addition, functionally non-support inputs
are identified by preprocessing and are shifted to either XA

or XB . Thus, simultaneously removing GiA and GiB is not
required.

It it important to point out that this way of greedy MUS
search is novel compared to [12,14] mainly in that the used
model (3) is different from the ones with control variables [12]
and the ones with BDD-based variable grouping [14]. In ad-



dition, an implicit cost function (4) is introduced to guide
the greedy search. Moreover, the techniques proposed in [5]
target the efficient computation of MUSes, but are unable to
take quality into account during either plain or group MUS
search.

4.2 AND/XOR Bi-Decomposition
AND bi-decomposition is the dual of OR bi-decomposition

and can be converted from the construction of OR models [5,
12, 14]. The proposed models can decompose ¬f into fA ∨
fB . By negating both sides, f is decomposed into ¬fA ∧
¬fB [12]. The XOR bi-decomposition is similar to OR bi-
decomposition [5,12] and can be explained with an analogous
derivation of the OR model. The derivation of AND/XOR
bi-decomposition is omitted due to lack of space.

4.3 Application-Oriented Optimization

4.3.1 Targeting Desired Quality
Practical uses of bi-decomposition [4, 11, 16] require the

ability to control the quality metrics of computed variable
partitions. As noted earlier, approximate models, includ-
ing LJH [12] and STEP-M [5], address the quality of vari-
able partitions, by enumeration of control variable assign-
ments [12] or unguided searching of MUSes [5], but offer
no guarantees that the results respect any quality criterion.
Moreover, the enumeration of control variables grows ex-
ponentially for searching the optimum variable partition.
Hence, approximate models are unable to guarantee qual-
ity criteria of the computed bi-decompositions. This section
proposes the use of cardinality constraints in the QBF-based
Models STEP-Q [6] for optimizing and controlling the qual-
ity of variable partitions.
This paper focus on two quality metrics, namely disjoint-

ness and balancedness. Different applications require dis-
tinct combinations of disjointness and balancedness. The
QBF models STEP-Q allow a wide range of possible prac-
tical uses. As shown in [6], cardinality constraints defined
over the control variables αx and βx serve to constrain the
computed solutions (see [6] for the definitions of αx and βx).
Consider small natural numbers pD, pB , qA, qB ∈ N. As a
result, a number of possible sets of constraints can be envi-
sioned:

• Completely disjoint and completely balanced:

[
∑

x∈X

(αx · βx) = 0] ∧ [
∑

x∈X

(αx · βx − αx · βx) = 0] (5)

• Completely disjoint and approximately balanced:

[
∑

x∈X

(αx · βx) = 0] ∧ [
∑

x∈X

(αx · βx − αx · βx) = pB ] (6)

• Approximately disjoint and completely balanced:

[
∑

x∈X

(αx · βx) = pD] ∧ [
∑

x∈X

(αx · βx − αx · βx) = 0] (7)

• Approximately disjoint and customized balancedness:

[
∑

x∈X

(αx·βx) = pD]∧[
∑

x∈X

(αx·βx) = qA]∧[
∑

x∈X

(αx·βx) = qB ]

(8)

The values of pD and pB range from completely disjoint and
balanced case to a fully customized case. Figure 1 illustrates
the concepts for case (8). The additional constraints, cou-
pled with the basic QBF model STEP-Q [6], allow fairly
flexible modeling of constraints on variable partitions.

f

13

7 12

a b

10 11

8 9

d ec

OUT

qA = 2 qB = 3

Function
Block A

Function
Block B

......

XA = {a, b}, XB = {c, d, e}, XC = ∅

||XA|| = 2, ||XB || = 3, ||XC || = 0

pD = 0, qA = 2, qB = 3

Figure 1: Example AIG (And-Inverter Graph) of
the application-oriented optimization technique

Performance
?

Quality
?

STEP-M STEP-Q

STEP-MQ

Finish

Aggregate
?

Decomposition Composition

Start

Figure 2: Optimization flow for bi-decomposition

4.3.2 Optimization Flow for Bi-Decomposition
In practice, bi-decomposition is recursively applied in logic

synthesis. As stated before, different applications may re-
quire different targets for the quality metrics. This applies
to both approximate and exact bi-decomposition solutions.
In addition, there is often a bound on the allowed runtime.
Therefore, it is reasonable to develop different models for
tackling different objectives when using bi-decompositions.
Figure 2 outlines the flow of bi-decomposing a Boolean func-
tion for different targets. Performance sensitive application
finds STEP-M model to compute an approximate solution.
Model STEP-Q directs the quality of bi-decomposition to
fulfill the quality requirement of the quality sensitive appli-
cations. The new model STEP-MQ aggregates these two
aspects to compute an approximate quality with a good per-
formance. The precedent uses of STEP-M, as shown by the
dashed arrows in Figure 2, offer STEP-Q and STEP-MQ

the preprocessing of upper bounds for QBF searching [6]
and candidates for variable partitions, respectively. After
obtaining of variable partitions, the original Boolean func-
tion is decomposed into decomposition functions, and which
are connected by a composition function [16], by using Craig
Interpolation [10, 12, 13]. The decomposition functions are
required to be functionally shared. Moreover, the interactive
search of variable partitions should be incremental.

5. EXPERIMENTAL RESULTS
The models from Section 4 are implemented in the Boolean

function bi-decomposition tool STEP — Satisfiability-based
funcTion dEcomPosition. STEP is written in C++ (and
compiled with G++ 4.4.3), it is implemented as an add-on



Table 1: Performance comparison

Circuit
Circuit Statistics LJH [12] STEP

#In #InM #Out
LJH-P LJH-Q STEP-MP [5] STEP-MG [5] STEP-QD [6] STEP-QB [6] STEP-MQ

#Dec Time (s) #Dec Time (s) #Dec Time (s) #Dec Time (s) #Dec Time (s) #Dec Time (s) #Dec Time (s)

C7552 207 194 108 10 536.48 10 625.13 17 71.79 17 16.56 17 50.72 17 25.64 17 22.48
s15850.1 611 183 684 - TO - TO 294 306.35 294 42.83 294 152.53 294 90.58 296 55.97
s38584.1 1464 147 1730 1065 446.23 1065 1912.06 1055 53.04 1055 23.12 1055 572.78 1055 117.25 1056 28.86
C2670 233 119 140 40 26.17 40 258.68 40 13.58 40 3.86 40 39.89 40 16.83 40 6.97
i10 257 108 224 131 407.22 131 2582.97 150 130.30 150 17.18 150 299.46 150 54.37 153 49.22
s38417 1664 99 1742 1202 5321.27 - TO 1203 2944.47 1203 2658.25 1203 4718.92 1203 3487.92 1203 2739.31
s9234.1 247 83 250 102 55.79 102 130.43 114 18.32 114 12.23 114 100.10 114 27.50 115 8.39
rot 135 63 107 49 29.25 49 28.53 62 2.03 62 0.81 62 17.88 62 4.42 62 1.43
s5378 199 60 213 107 7.16 107 47.19 111 5.22 111 3.31 111 82.88 111 11.24 111 2.66
s1423 91 59 79 26 57.06 26 53.45 40 6.50 40 1.63 40 22.14 40 5.13 40 1.93
pair 173 53 137 117 12.84 117 84.42 114 13.89 114 10.50 114 202.11 114 33.00 114 6.74
C880 60 45 26 16 6.61 16 64.72 16 2.84 16 2.03 16 6.65 16 7.44 16 2.29
clma 415 42 115 39 1356.93 - TO 34 1206.85 39 40.90 39 106.27 39 48.01 39 178.80
ITC b07 49 42 57 14 18.08 14 16.38 18 3.70 18 1.47 18 2.44 18 2.07 18 1.10
ITC b12 125 37 127 80 18.18 80 17.80 79 2.21 79 0.44 79 13.14 79 1.97 79 1.11
sbc 68 35 84 51 4.43 51 8.80 59 1.00 62 0.57 62 10.28 62 2.80 59 0.81
mm9a 39 31 36 22 10.07 22 103.38 28 8.17 28 4.16 28 28.29 28 10.20 28 4.17
mm9b 38 31 35 20 18.97 20 95.90 26 13.00 26 7.57 26 34.50 26 13.30 26 7.12

to ABC [1], and it uses ABC’s circuit representation and
manipulation. MiniSAT [9] is used for SAT solving.
This section evaluates the performance and quality of bi-

decomposition between SAT-based models. Given a circuit,
each Boolean function of Primary Output (PO) is decom-
posed into simpler sub-functions using the proposed mod-
els. Sequential circuits are converted into combinational
circuits. In this section, LJH-P (the fastest performance
mode of LJH model [12]), LJH-Q (the best quality mode of
LJHmodel), STEP-MP (plain-MUS mode of STEP [5,6]),
STEP-MG (group-oriented-MUS mode of STEP), STEP-

QD (QBF model of STEP for optimum Disjointness) and
STEP-QB (QBF model of STEP for optimum Balanced-
ness) are compared with the new model STEP-MQ. The
model STEP-MQ implements Algorithm 1.
The experiments were performed on a Linux server with

an Intel Xeon X3470 2.93-GHz processor and 6GB RAM.
Experimental results were obtained on industrial benchmarks
ISCAS’85, ISCAS’89, ITC’99 and LGSynth. Circuits with
zero decomposable PO functions were removed from the ta-
bles of results. For each circuit, the total timeout was set to
6000 seconds. Due to space restrictions, only representative
experimental results (for the large circuits, with #InM >

30) are shown. This section mainly presents the experimen-
tal results for OR bi-decomposition 1.

5.1 Performance of Models
Performance of models significantly affects the practical

uses of bi-decomposition in logic synthesis, partly because
bi-decomposition is recursively exploited in a number of in-
ternal loops of logic synthesis. This section evaluates the
performance of the techniques proposed in this paper. Two
performance metrics, CPU time and the number of decom-
posable functions, were used for assessing performance. Smaller
CPU times indicate that decomposing a complete circuit will
be faster and a larger number of decomposable functions rep-
resents an enhanced decomposability of the tool, indicating
the tool is able to decompose more functions in the allowed
CPU time, assuming more decomposable functions do exist.
Table 1 presents the performance data for OR bi-decom-

position of the large circuits. The experimental data is
sorted by decreasing number of maximum support variables

1AND and XOR bi-decomposition using the LJH model is
unavailable in the Bi-dec tool [12].
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Figure 3: Performance comparison

(#InM). Columns#In,#InM,#Out,#Dec andTime(s)
denote the number of primary inputs, maximum number
of support variables in POs, PO functions (to be decom-
posed), decomposed POs and total CPU time, respectively.
The results clearly show that STEP-MQ significantly out-
performs LJH models and the other three STEP models,
while achieving similar decomposibility.

Figure 3 shows the performance data for bi-decomposition
of small and medium-size circuits. The number of solved cir-
cuits are plotted in the figure. Moreover, the total number
of solved circuits out of all 145 circuits are sorted and it
is showed descendingly by the legends. It is clearly that
STEP-MQ solved more instances than the LJH models
and the majority of STEP models. STEP-MQ performs
slightly worse than STEP-MG but it is important to em-
phasize that STEP-MQ produces much better quality of bi-
decompositions than STEP-MG. In addition, STEP-MQ

produced similar quality to LJH-Q, but with much better
performance.

5.2 Quality of Models
The quality of variable partitions is tightly related with

the quality of decompositions [5–7,12,13]. This paper evalu-
ates the quality of bi-decompositions using the same quality
metrics as in [5,6,12,13], namely disjointness and balanced-
ness.
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Figure 4: Quality metrics comparison

Following [5, 6, 12], disjointness is preferably considered
in part because a smaller disjointness typically corresponds
to optimally decomposed circuit during logic circuits [5,12].
Figure 4 summarizes the quality of variable partitions achie-
ved in the decomposed circuits. To guarantee a fair com-
parison, only the functions that can be decomposed by the
both two approaches are calculated. Due to space restric-
tions, only OR models are shown1. STEP-MQ computes
approximate solutions. Unlike the exact models [6] STEP-

{QD,QB}, the disjointness and balancedness cannot be guar-
anteed by STEP-MQ. STEP-MQ produces inferior bal-
ancedness compared to the SAT-based models [12], this phe-
nomenon is because low disjointness and low balancedness
are sometimes mutually exclusive [5, 12]. As can be ob-
served, STEP-MQ achieved significantly better disjointness
than the major approximate models, including LJH-P and
STEP-{MP,MG} models.

6. CONCLUSION
This paper extends SAT-based models for bi-decomposition,

and develops a new model. The relative inefficiency of the
exactmodels limits their use on very large Boolean functions.
The nature of unguided MUS and SAT searching limits the
use of existing approximate models for controllable quali-
ties. This paper develops new approximate group-oriented
MUS-based models for bi-decomposition, and extends exist-
ing SAT-based models for addressing practical requirements
of bi-decomposition. A key feature is that new models allow
MUS searching to be guided by an implicit cost function.
Comprehensive experiments with the existing and the new

bi-decomposition models demonstrate that the new mod-
els achieve significant performance gains and, more impor-
tantly, also achieve visible improvement in the quality of
bi-decompositions. Future work will address a tighter inte-
gration between tools, including STEP [5, 6] and ABC [1],
in logic synthesis, targeting area, delay and power reduction.
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