
On computing minimal equivalent subformulasOn computing minimal equivalent subformulas

Anton Belov, Mikolas Janota, Inês Lynce, Joao Marques-Silva

Publication datePublication date

01-01-2012

Published inPublished in

18th International Conference on Principles and Practice of Constraint Programming (CP 2012). Lecture
Notes in Computer Science;pp. 158-174

LicenceLicence

This work is made available under the CC BY-NC-SA 1.0 licence and should only be used in accordance with
that licence. For more information on the specific terms, consult the repository record for this item.

Document VersionDocument Version
1

Citation for this work (HarvardUL)Citation for this work (HarvardUL)

Belov, A., Janota, M., Lynce, I.and Marques-Silva, J. (2012) ‘On computing minimal equivalent subformulas’,
available: https://hdl.handle.net/10344/2766 [accessed 25 Jul 2022].

This work was downloaded from the University of Limerick research repository.

For more information on this work, the University of Limerick research repository or to report an issue, you can
contact the repository administrators at ir@ul.ie. If you feel that this work breaches copyright, please provide
details and we will remove access to the work immediately while we investigate your claim.

https://creativecommons.org/licenses/by-nc-sa/1.0/
mailto:ir@ul.ie

On Computing Minimal Equivalent Subformulas

Anton Belov1, Mikoláš Janota2, Ines Lynce2, and Joao Marques-Silva1,2

1 CASL, University College Dublin, Ireland
2 IST/INESC-ID, Technical University of Lisbon, Portugal

Abstract. A propositional formula in Conjunctive Normal Form (CNF)
may contain redundant clauses — clauses whose removal from the for-
mula does not affect the set of its models. Identification of redundant
clauses is important because redundancy often leads to unnecessary com-
putation, wasted storage, and may obscure the structure of the problem.
A formula obtained by the removal of all redundant clauses from a given
CNF formula F is called a Minimal Equivalent Subformula (MES) of F .
This paper proposes a number of efficient algorithms and optimization
techniques for the computation of MESes. Previous work on MES com-
putation proposes a simple algorithm based on iterative application of
the definition of a redundant clause, similar to the well-known deletion-
based approach for the computation of Minimal Unsatisfiable Subfor-
mulas (MUSes). This paper observes that, in fact, most of the existing
algorithms for the computation of MUSes can be adapted to the compu-
tation of MESes. However, some of the optimization techniques that are
crucial for the performance of the state-of-the-art MUS extractors cannot
be applied in the context of MES computation, and thus the resulting
algorithms are often not efficient in practice. To address the problem of
efficient computation of MESes, the paper develops a new class of al-
gorithms that are based on the iterative analysis of subsets of clauses.
The experimental results, obtained on representative problem instances,
confirm the effectiveness of the proposed algorithms. The experimental
results also reveal that many CNF instances obtained from the practical
applications of SAT exhibit a large degree of redundancy.

1 Introduction

A propositional formula in Conjunctive Normal Form (CNF) is redundant if
some of its clauses can be removed without changing the set of models of the
formula. Formula redundancy is often desirable. For example, modern Conflict-
Driven Clause Learning (CDCL) Boolean Satisfiability (SAT) solvers learn re-
dundant clauses [33,1], which are often essential for solving practical instances of
SAT. However, redundancy can also be undesirable. For example, in knowledge
bases formula redundancy leads to the use of unnecessary storage and compu-
tational resources [25]. Another example is the undesirable redundant clauses in
the CNF representation of belief states in a conformant planner [37,36]. In the
context of probabilistic reasoning systems, concise representation of conditional
independence information can be computed by removing redundant clauses from
certain propositional encodings [30]. More generally, given the wide range of ap-
plications of SAT, one can pose the question: does a given problem domain

2 Belov, Janota, Lynce and Marques-Silva

encoder introduce redundancy, and if so, how significant is the percentage of
redundant clauses? Removal of redundancies can also find application in solv-
ing problems from different complexity classes, for example Quantified Boolean
Formulas (QBF). Besides propositional logic formulas, the problem of the identi-
fication of redundant constraints is relevant in other domains. Concrete examples
include Constraint Satisfaction Problems (CSP) [12,10,9], Satisfiability Modulo
Theories (SMT) [35], and Ontologies [19].

This paper addresses the problem of computing an irredundant subformula
E of a redundant CNF formula F , such that F and E have the same set of
models. Such subformula E will be referred to as a Minimal Equivalent Sub-
formula (MES) of F . Previous work on removing redundant clauses from CNF
formulas proposes a direct approach [7], which iteratively checks the definition
of redundant clause and removes the clauses that are found to be redundant.
While the direct approach is similar to the well-known deletion-based approach
for the computation of Minimal Unsatisfiable Subformulas (MUSes), most of the
techniques developed for the extraction of MUSes (e.g. see [18,14,27]) have not
been extended to the computation of MESes.

The paper has five main contributions, summarized as follows. First, the pa-
per shows that many of the existing MUS extraction algorithms can be extended
to the computation of MESes. Since efficient MUS extraction uses a number of
key techniques for reducing the total number of SAT solver calls — namely,
clause set refinement [13,29,28] and model rotation [28,4] — this paper analyzes
these techniques in the context of MES extraction. The second contribution of
the paper is, then, to show that model rotation can be integrated, and, in fact,
improved, in MES extraction, however clause set refinement cannot be used in
MES algorithms derived from the existing MUS algorithms. Third, the paper
proposes a reduction from MES computation problem to group-MUS computa-
tion problem [26,29]; this reduction enables the use of both model rotation and
clause set refinement for MES extraction. Fourth, given that the approach of
reduction to group-MUS can result in hard instances of SAT, the paper pro-
poses an incremental reduction of MES to group-MUS extraction, that involves
the separate analysis of subsets of clauses. Fifth, and finally, the paper develops
solutions for checking that computed MESes are correct. These solutions find
application in settings where independent certification is required.

Experimental results, obtained on representative satisfiable instances from
past SAT competitions, show that the new algorithms for MES computation
achieve significant performance gains over the basic algorithms, and allow tar-
geting redundancy removal for reasonably sized formulas. In addition, the exper-
imental results show that many CNF formulas, from a wide range of application
domains, contain a significant percentage of redundant clauses, in some cases
exceeding 90% of the original clauses.

2 Preliminaries

Standard definitions for propositional logic are assumed. Propositional formulas
are defined over a set of propositional variables X = {x1, . . . , xn}. A CNF for-
mula F is a conjunction of disjunctions of literals (clauses), where a literal is

On Computing MESes 3

a variable or its complement. Unless otherwise stated, a CNF formula will be
referred to as a formula. Formulas are represented by letters with calligraphic
fonts, e.g. F , E , S, W, etc. When necessary, subscripts are used. Clauses are
represented by c or ci, i = 1, . . . ,m. A CNF formula can also be viewed as a
multiset of non-tautologous clauses where a clause is a (multi)set of literals. The
two representations are used interchangeably, and are clear from the context. A
truth assignment µ is a mapping from X to {0, 1}, µ : X → {0, 1}. The truth
value of a clause c or formula F , given a truth assignment µ, is represented as
c[µ] and F [µ], respectively. A truth assignment is a model if it satisfies all clauses
in F , i.e. F [µ] = 1. Two formulas F1 and F2 are equivalent, F1 ≡ F2, if they have
the same set of models. The negation of a clause c, denoted by ¬c represents a
conjunction of unit clauses, one for each literal in c. It will also be necessary to
negate CNF formulas, e.g. ¬F . The following CNF encoding for ¬F is used [34].
An auxiliary variable ui is associated with each ci ∈ F , defining a set of variables
U . For each li,j ∈ ci, create binary clauses (¬li,j ∨ ¬ui). Finally, create a clause
(∨ui∈Uui). This CNF encoding is represented as CNF(·). For example, CNF(¬c)
and CNF(¬F) denote, respectively, the CNF encoding of ¬c and ¬F described
above; both CNF(¬c) and CNF(¬F) can be used in set context to denote sets
of clauses. Calls to a SAT solver are represented with SAT(·).

2.1 MUSes and MESes

The following definition of Minimal Unsatisfiable Subformulas (MUSes) is used [6].

Definition 1 (MUS). M ⊆ F is a Minimal Unsatisfiable Subformula (MUS)
iff M is unsatisfiable and ∀S(M,S is satisfiable.

MUS extraction algorithms can be broadly characterized as deletion-based [8,3]
or insertion-based. Moreover, insertion-based algorithms can be characterized as
linear search [11] or dichotomic search [23,21]. Recent work proposed insertion-
based MUS extraction with relaxation variables and AtMost1 constraints [28]. In
practice, the most efficient MUS extraction algorithms are organized as deletion-
based but operate as insertion-based to allow the integration of essential pruning
techniques. These algorithms are referred to as hybrid [28]. Examples of pruning
techniques used to reduce the number of SAT solver calls include clause set trim-
ming (during preprocessing), clause set refinement and model rotation [13,29,28,4].
Clause set refinement [13,28] exploits the SAT solver false (or unsatisfiable) out-
comes to reduce the set of clauses that need to be analyzed. This consists of
removing clauses that are not included in the MUS being constructed, e.g. by
restricting the target set of clauses to the unsatisfiable subset computed by the
SAT solver. In contrast, model rotation exploits the SAT solver true (or satisfi-
able) outcomes to also reduce the set of clauses that need to be analyzed. In this
case, models are used to identify clauses that must be included in the MUS being
constructed. Recent experimental data [28] indicates that these two techniques
are essential for MUS extraction on large application problem instances.

Motivated by several applications, MUSes and related concepts have been
extended to CNF formulas where clauses are partitioned into disjoint sets called
groups [26,29].

4 Belov, Janota, Lynce and Marques-Silva

Definition 2 (Group-Oriented MUS). Given an explicitly partitioned un-
satisfiable CNF formula F = D∪G1 · · · ∪ Gn, a group oriented MUS (or, group-
MUS) of F is a subset F ′ = D∪Gi1 ∪ · · · ∪Gik of F such that F ′ is unsatisfiable
and, for every 1 ≤ j ≤ k, F ′ \ Gij is satisfiable.

The groupD in the above definition is called a don’t care group, and the explicitly
partitioned CNF formulas as above are referred to as group-CNF formulas.

MUSes are a special case (for unsatisfiable formulas) of irredundant subfor-
mulas [25]. The following definitions will be used throughout.

Definition 3 (Redundant/Irredundant Clause/Formula). A clause c ∈
F is said to be redundant in F if F\{c} � c or, equivalently, F\{c}∪CNF(¬c) �
⊥. Otherwise, c is said to be irredundant in F . A formula F is redundant if it
has at least one redundant clause; otherwise it is irredundant.

Irredundant subformulas of (redundant) formulas are referred to as irredundant
equivalent subsets [25] and as irredundant cores [24]. In this paper, irredundant
subformulas are referred to as Minimal Equivalent Subformulas (MESes), by
analogy with MUSes.

Definition 4 (MES). E ⊆ F is a Minimal Equivalent Subformula (MES) iff
E ≡ F and ∀Q(E ,Q 6≡ F .

Clearly, an MES is irredundant. Moreover, deciding whether a CNF formula is
an MES is DP -complete [25]. In the case of group-CNF formulas, the concept of
group-oriented MES (group-MES) can be defined analogously to Definition 2.

2.2 Related Work

MUSes find a wide range of practical applications, and have been extensively
studied (see [18,14,27] for recent overviews, and [23,21,16,17] for connections
with CSP). The problem of computing minimal (or irredundant) representa-
tions of CNF formulas (and related problems) has been the subject of exten-
sive research (e.g. [2,20,7,25,24]). Complexity characterizations of redundancy
problems in logic can be found in [25]. An algorithm for computing an MES
based on the direct application of the definition of clause redundancy is stud-
ied in [7]. More recently, properties of MESes are studied in [24]. Approx-
imate solutions for redundancy removal based on unit propagation are pro-
posed in [15,31]. Applications (of restricted forms) of redundancy removal can
be found in [22,37,36,15,25,30]. The importance of redundant clauses in CDCL
SAT solvers is addressed in [33,1]. Redundancy problems have been studied in
many other settings, e.g. [12,10,9,35,19].

3 MES Extraction Algorithms

This section develops several new approaches for computing one MES of a CNF
formula F . The first solution consists of adapting any MUS extraction algo-
rithm based on identification of so-called transition clauses, for MES extrac-
tion. Afterwards, key techniques used in MUS extraction are studied. Model

On Computing MESes 5

MUS
Algs.

MES
Algs.
1,2,3

MUS
Model
Rot.

MES
Model
Rot.

MUS
Cl. Set
Refin.

MES

Group
MUS

Group
MUS w/
Chunks

MES
Alg. 4

Def. 5 Prop. 1 Prop. 2 Props. 3, 4

Fig. 1. Approaches to MES extraction.

rotation [28,4] is applied to MES extraction, and it is argued that clause set
refinement [13,29,28] cannot be directly applied to MES extraction algorithms
resulting from adapting existing MUS extraction algorithms. Next, a reduction
from MES to group-MUS formulation [26,29] is developed, which enables the
use of both model rotation and clause set refinement. Although the reduction of
MES to group-MUS extraction enables the integration of key techniques, it is
also the case that the resulting instances of SAT are hard to solve. This section
concludes by developing an incremental reduction from MES to group-MUS ex-
traction, which produces much easier instances of SAT. Figure 1 summarizes the
approaches to MES extraction described in the remainder of this section.

3.1 From MUS Extraction to MES Extraction

A key definition in MUS extraction algorithms is that of transition clause [18].
A transition clause c is such that, if added to a satisfiable subformula R, the
resulting subformula is unsatisfiable. This definition can be generalized for MES
extraction as follows. Let R (F denote a (reference) subformula of F which is
to be extended to be equivalent to F . Observe that F �R, and so our goal is to
extend R with a clause c, such that R∪ {c}�F , and so R∪ {c} ≡ F .

Definition 5 (Witness of Equivalence). Let S denote a subformula of F ,
S (F , with S 2F \ S, and let c ∈ F \ S. If S ∪ {c}�F \ (S ∪ {c}), then c is a
witness of S ∪ {c} ≡ F .

The above definition can now be used to adapt any MUS extraction algorithm
for MES extraction. The remainder of this section illustrates how this can be
achieved. Let F be a CNF formula partitioned as follows, F = E ∪R∪S. A sub-
formula R is redundant in F iff E∪S �R. Given an under-approximation E of an
MES of F , and a working subformula S (F , the objective is to decide whether
E and S entail all the other clauses of F . MUS extraction algorithms can be or-
ganized as (see Section 2.1): (i) deletion-based [8,3], (ii) insertion-based [11,38],
(iii) insertion-based with dichotomic search [23,21], and (iv) insertion-based with
relaxation variables [28].

6 Belov, Janota, Lynce and Marques-Silva

Algorithm 1: Plain deletion-based MES extraction

Input : Formula F
Output: MES E

1 begin
2 S ← F
3 E ← ∅ // MES under-approximation

4 while S 6= ∅ do
5 c← SelectRemoveClause(S) // Get a clause from S
6 W ← {c}
7 if SAT(E ∪ S ∪ CNF(¬W)) then
8 E ← E ∪ {c} // Add clause c to E if E ∪ S 2 c

9 return E // Final E is MES

10 end

Algorithm 2: Plain insertion-based MES extraction

Input : Formula F = {c1, . . . , cm}
Output: MES E

1 begin
2 W ← F
3 E ← ∅ // MES under-approximation

4 while W 6= ∅ do
5 (S, cr)← (∅, ∅)
6 while SAT(E ∪ S ∪ CNF(¬W)) do
7 cr ← SelectRemoveClause(W) // Extend S while E ∪ S 2W
8 S ← S ∪ {cr}
9 E ← E ∪ {cr} // cr is in MES

10 W ← S \ {cr}
11 return E // Final E is an MES

12 end

The pseudo-code for deletion-based MES extraction is shown in Algorithm 1.
At each step, the algorithm uses an MES under-approximation E , a set of (re-
maining) clauses S, and a target clause c, to check whether E ∪ S � c. If this is
not the case, i.e. if E ∪ S 2 c, then c is witness of E ∪ S ∪ {c} ≡ F , and so c
is added to E ; otherwise, c is discarded. Observe that the deletion-based MES
extraction algorithm corresponds to the direct implementation of the definition
of redundant clause (e.g. see [7]).

The pseudo-code for insertion-based linear and dichotomic search MES ex-
traction are shown in Algorithms 2 and 3, respectively. Both algorithms iter-
atively add clauses to set S while E ∪ S 2W. The last clause included in S
such that E ∪ S �W is the witness of equivalence. The main difference between
algorithms 2 and 3 is how the witness of equivalence is searched for.

Recent experimental data indicates that the most efficient MUS extraction
algorithms are deletion-based (or variants) [28]. Since insertion-based MES al-
gorithms require SAT solver calls with (possibly large) complemented formu-

On Computing MESes 7

Algorithm 3: MES extraction with dichotomic search

Input : Formula F = {c1, . . . , cm}
Output: MES E

1 begin
2 W ← F
3 E ← ∅ // MES under-approximation

4 while W 6= ∅ do
5 (min,mid,max)← (0, 0, |W|)
6 repeat
7 S ← {c1, . . . , cmid} // Extract sub-sequence of W
8 if SAT(E ∪ S ∪ CNF(¬(W \ S))) then
9 min← mid + 1 // Extend S if E ∪ S 2W \ S

10 else
11 max← mid // Reduce S if E ∪ S �W \ S
12 mid← b(min + max)/2c
13 until min = max
14 if min > 0 then
15 E ← E ∪ {cmin}
16 W ← {ci | i < min}
17 return E // Final E is an MES

18 end

las, deletion-based MES extraction algorithms are expected to outperform the
insertion-based ones. This is confirmed by the results in Section 5.

Efficient MUS extraction algorithms [13,29,28] must use a number of addi-
tional techniques for reducing the number of SAT solver calls. These techniques
include clause set refinement [13,28] and model rotation [28,4]. The next section
shows how model rotation can be used in MES extraction. In contrast, clause
set refinement cannot be applied in the algorithms described above.

Example 1. Let F = (x1) ∧ (x1 ∨ x3) ∧ (x2), and consider the execution of
Algorithm 1. First, clause (x1) is removed and the resulting formula is satisfiable
with x1 = 0, x2 = x3 = 1; hence (x1) is irredundant. Second, clause (x1 ∨ x3) is
removed and the resulting formula is unsatisfiable; hence (x1∨x3) is redundant.
Moreover, the computed unsatisfiable core is {(x1), (¬x1)}, where (¬x1) is taken
from ¬(x1 ∨ x3). However, (x2) is not in the unsatisfiable core, but it cannot be
removed.

As illustrated by the previous example, since MES extraction algorithms require
adding the negation of a subformula of F , the computed unsatisfiable cores
depend on this negation, which changes as the algorithm executes. Thus, a com-
puted unsatisfiable core provides no information about which clauses need not
be considered further. Despite this negative result, Sections 3.3 and 3.4 develop
solutions for MES extraction that enable clause set refinement.

8 Belov, Janota, Lynce and Marques-Silva

3.2 Using Model Rotation in MES Extraction

The definition of irredundant clause (see Definition 3) can be associated with
specific truth assignments, that can serve as witnesses of irredundancy.

Proposition 1. A clause c ∈ F is irredundant in F if and only if there exists
a truth assignment µ, such that (F \ {c})[µ] = 1 and c[µ] = 0.

Proof. Follows directly from the definition of an irredundant clause and the
semantics of F \ {c} 6� c. ut

In the context of MUS extraction, Proposition 1 is used as a basis of model
rotation [28,4] — a powerful optimization technique that in practice allows to
significantly reduce the number of calls to SAT solver, and results in multiple
orders of magnitude reduction in run-times of hybrid MUS extraction algorithms
on industrial problem instances (cf. [4]). Proposition 1 has also been used in the
context of local search for MUS extraction [32].

In the context of MES extraction, model rotation can be instrumented as
follows. If a SAT solver call returns satisfiable (see, for example, line 7 in Algo-
rithm 1), then we can use the model computed by the solver to look for other
irredundant clauses using Proposition 1. Note that the clauses of the negation of
the working formula (e.g. CNF(¬W) in Algorithm 1) can be disregarded, and the
objective is to modify the returned model such that exactly one other clause of
the working formula becomes falsified. Iteratively, each literal from the currently
falsified clause is flipped, and one checks whether the formula has another single
falsified clause, which can then be declared irredundant according to Proposi-
tion 1, without a SAT solver call. This process is continued recursively from the
newly detected irredundant clause.

Model rotation for MES extraction can be improved further. Since the for-
mula is satisfiable, model rotation may reach assignments where all clauses are
satisfied (note that this situation is not possible in MUS extraction). In this
case, rather than terminating the process, clauses with the smallest number of
satisfied literals are selected, the satisfied literals are flipped, and again one
checks whether the formula has a single unsatisfied clause. As demonstrated in
Section 5, this improved model rotation is very effective for redundancy removal.

3.3 A Reduction of MES to Group-MUS

As argued in Section 3.1, although MUS extraction algorithms can be modified
for MES extraction, clause set refinement [13,29,28] cannot be used. In the con-
text of MUS computation, this technique is paramount for reducing the number
of SAT solver calls in instances with many redundant clauses. This section de-
velops a reduction of MES computation problem to group-MUS computation
problem [26,29] — recall Definition 2. A key advantage of this reduction is that
it enables clause set refinement.

Proposition 2 (MES to Group-MUS Reduction). Given a CNF formula
F , and any E ⊆ F , let RF (E) be the group-CNF formula D ∪

⋃
c∈E Gc, where

D = CNF(¬F) is the don’t care group, and Gc = {c}. Then, E is an MES of F
if and only if RF (E) is a group-MUS of RF (F).

On Computing MESes 9

Proof. We prove both directions simultaneously. Since RF (E) = CNF(¬F) ∪ E ,
we have that E �F (and so E ≡ F), if and only if RF (E) is unsatisfiable. Let c be
any clause of E . Then, by Proposition 1, c is irredundant in E if and only if there
exists an assignment µ, such that (E \ {c})[µ] = 1 and c[µ] = 0. Equivalently,
there is an extension µ′ of µ such that CNF(¬F)[µ′] = 1 and (E \ {c})[µ′] = 1,
i.e. RF (E \ {c}) is satisfiable. ut

Expressing the MES computation problem as a group-MUS computation
problem enables the use of optimization techniques for (group-)MUS extrac-
tion in computing irredundant CNF formulas. Most importantly, the clause-set
refinement becomes usable and effective again. We demonstrate this with the
following example.

Example 2. Consider the CNF formula F = (x1) ∧ (x1 ∨ yi ∨ yj), with 1 ≤ i <
j ≤ k, and k ≥ 2. All clauses with a literal in the y variables are redundant, for
a total of k(k−1)/2 redundant clauses. The reduction in Proposition 2 produces
the group-CNF formula RF (F) with the don’t care group D = CNF(¬F), and
a singleton group for each clause in F , i.e. G11 = {(x1)}, Gij = {(x1 ∨ yi ∨ yj)},
with 1 ≤ i < j ≤ k. For this example, let us assume that the group-MUS of
RF (F) is computed using a deletion-based algorithm. Let G11 be the first group
to be analyzed. This is done by removing the clause in G11 from the formula. The
resulting formula has a model µ, with µ(x1) = 0 and µ(yi) = µ(yj) = 1, with
1 ≤ i < j ≤ k. As a result, (x1) is declared irredundant, and added back to the
formula. Afterwards, pick one of the other groups, e.g. G12. If the corresponding
clause is removed from the formula, the resulting formula is unsatisfiable, and
so the clause is declared redundant. More importantly, a CDCL SAT solver will
produce an unsatisfiable core U ⊆ {x1}∪CNF(¬F). Hence, clause set refinement
serves to eliminate all of the remaining groups of clauses, and so the MES is
computed with two SAT solver calls. As noted earlier, MES algorithms based on
adapting existing MUS algorithms are unable to implement clause set refinement,
and so cannot drop k(k − 1)/2 clauses after the second SAT solver call.

Observe that the group-MUS approach to the MES extraction problem, i.e.
using the reduction in Proposition 2, is independent of the actual group-MUS
extraction algorithm used. Hence, any existing group-MUS extraction algorithm
can be used for the MES extraction problem. In practice, given the significant
performance difference between deletion-based and insertion-based MUS extrac-
tion algorithms [28], our implementation is based on deletion-based group-MUS
extraction and its most recent instantiation, i.e. the hybrid approach in [28].

3.4 Incremental Reduction of MES to Group-MUS

A major drawback of the group-MUS approach is that for large input formulas
the resulting instances of SAT can be hard. This is due to the CNF encoding of
¬F that produces a large disjunction of auxiliary variables. A solution to this
issue is based on an incremental reduction of MES extraction to group-MUS
extraction. Let T be any subset of clauses of F — we refer to clauses of T as
target clauses, and to the set T itself as a chunk of F . The incremental reduction

10 Belov, Janota, Lynce and Marques-Silva

is based on the observation that in group-MUS approach the redundancy of any
target clause c ∈ T can be established by analysing c with respect to CNF(¬T)
rather than CNF(¬F). This observation is stated precisely below.

Proposition 3. Let T ⊆ F be a set of target clauses. For any E ⊆ T , let RT (E)
be the group-CNF formula D ∪

⋃
c∈E Gc, where D = F \ T ∪ CNF(¬T) is the

don’t care group, and Gc = {c}. Then, E is irredundant in F and F \ T ∪ E ≡ F
if and only if RT (E) is a group-MUS of RT (T).

Note that RT (T) is unsatisfiable. Also, in the case when the chunk T is taken to
be the whole formula F , the group-CNF formula RT (E) is exactly the formula
RF (E) from Proposition 2, and so the claim of Proposition 2 is a special case of
the claim of Proposition 3. We omit the proof of Proposition 3 as it essentially
repeats the steps of the proof of Proposition 2, using the definition of RT (E)
instead of RF (E).

For the general case, consider a partition F1, . . . ,Fk of F into chunks. Then,
an MES of F can be computed by applying the group-MUS approach of Propo-
sition 3 to each chunk. Proposition 3 is applied in order, with already computed
irredundant subformulas replacing the original (redundant) subformulas. Explic-
itly, for the iteration j, 1 ≤ j ≤ k, the input group-CNF formula in Proposition 3
is defined as follows:

D ∪
⋃

c∈Fj

Gc, with D = E1 ∪ . . . ∪ Ej−1 ∪ Fj+1 ∪ . . .Fk ∪ CNF(¬Fj) (1)

as a don’t care group, where Ei, 1 ≤ i < j, is the computed irredundant set of
clauses in Fi, and, as before, Gc = {c}.

Proposition 4. Let F1, . . . ,Fk be a partition of F into chunks. Let Ej be the
set of clauses obtained from applying group-MUS extraction to formula in (1),
and by considering each Fj as the set of target clauses. Let E = E1∪E2∪ . . .∪Ek.
Then E is an MES of F 3.

Proof sketch. The proof uses induction on the sets Fj and Proposition 3 to prove
the following inductive invariant: for 1 ≤ j ≤ k, (

⋃
r≤j Er ∪

⋃
r>j Fr) ≡ F ,

and the formula
⋃

r≤j Er is irredundant in F .
Base case: Take T = F1, and apply Proposition 3 to formula F .
Inductive step: For 1 < j ≤ k, take T = Fj , and apply Proposition 3 to the
formula

⋃
r<j Er ∪

⋃
r≥j Fr. Then, using the inductive hypothesis, establish the

required invariant. 2

While Proposition 4 can be used to compute an MES of an input formula
F by iteratively calling a group-MUS extractor, it can also be integrated into a
unified algorithm to enable certain optimizations (e.g. incremental SAT solving).
Algorithm 4 shows the pseudo-code for deletion-based group-MUS approach to
MES extraction using chunks. Different chunk sizes can be considered. Con-
crete examples include chunks of size 1 or a single chunk aggregating all clauses
(i.e. the reduction to group-MUS defined in Proposition 2). For chunks of size

3 The proposition is stated slightly informally as to avoid additional notation.

On Computing MESes 11

Algorithm 4: Deletion-based group-MUS extraction of MES with chunks

Input : Formula F = {F1, . . . ,Fk} with k chunks
Output: MES E

1 begin
2 for j ← 1 to k do // Analyze each of the k chunks

3 D = E1 ∪ . . . ∪ Ej−1 ∪Fj+1 ∪ . . . ∪Fk ∪ CNF(¬Fj) // Don’t care group

4 W = Fj // Target group of clauses Fj

5 Ej ← ∅ // Irredundant clauses in chunk j
6 while W 6= ∅ do
7 c← SelectRemoveClause(W)
8 (st, ν,U) = SAT(D ∪ Ej ∪W)
9 if st = true then // If SAT, c is irredundant in F

10 Ej ← Ej ∪ {c}
11 (W, Ej)← Rotate(W, Ej , ν) // Apply model rotation

12 else
13 W ← U ∩W // Clause-set refinement

14 E = E1 ∪ . . . ∪ Ek
15 return E // E is an MES

16 end

great than 1, the group-MUS approach has the ability to prove several clauses
redundant by using clause-set refinement. Generally, the chunk size in the group-
MUS approach controls the trade-off between the potential power of clause-set
refinement and the difficulty of the instances of SAT given to the SAT solver.

Nevertheless, an essential issue with Algorithm 4 is the selection of the size
of the chunks. The current implementation of the algorithm uses chunks of fixed
size, independently of the size of the formula. Alternative solutions include using
chunk sizes dependent on the size of the formula, and also adaptive chunk sizes.

4 Certification of Correctness

In some applications, it is paramount to guarantee that the computed subfor-
mula is indeed irredundant and, possibly more importantly, that each computed
irredundant subformula E is equivalent to the original CNF formula F . Given
a computed CNF formula E , it is simple to validate whether it is irredundant.
Essentially, one can run one of the algorithms outlined in earlier sections. The
problem of validating whether E ≡ F looks more challenging.

To check whether E ≡ F , it suffices to exhibit a truth assignment that is a
model of one formula and not of the other. This condition corresponds to testing
the satisfiability of the following CNF formula:

(E ∧ CNF(¬F)) ∨ (F ∧ CNF(¬E)) (2)

Clearly, the resulting instances of SAT are expected to be hard to solve, given
the disjunction and the negation of formulas in (2). Nevertheless, it is also the
case that E ⊆ F and so, F � E . Hence it is only necessary to check whether

12 Belov, Janota, Lynce and Marques-Silva

E �F . Since F = E ∧R, E �F can be represented as E � E ∧R, or equivalently,
E ∧ (¬E ∨ ¬R)�⊥, which simplifies to E ∧ ¬R�⊥. This condition corresponds
to testing the satisfiability of the following CNF formula:

E ∪ CNF(¬R) (3)

If E ∪ CNF(¬R) has a model, then one can satisfy E while unsatisfying one or
more clauses in R. Hence, the two formulas would not be equivalent.

Although easier than (2), (3) can still result in hard instances of SAT (sim-
ilarly to what happens with the reduction of MES to group-MUS extraction).
A technique to reduce the complexity of the resulting instances of SAT is to
partition R into chunks, and check each chunk separately for equivalence. The
objective is to check whether E �R. If this condition holds, then E ≡ F ; other-
wise E 6≡ F . If R is partitioned into a number of subformulas (or chunks), we
get R = R1∧ . . .∧Rk, and so the condition becomes, E �R1∧ . . .∧Rk, that can
also be represented as E ∧(¬R1∨ . . .∨¬Rk)�⊥. This condition holds if and only
if, ∀1≤j≤k , E ∧ ¬Rj �⊥. Hence, the use of chunks allows splitting a potentially
hard (and believed unsatisfiable) instance of SAT, into k (likely) easier (and also
believed unsatisfiable) instances of SAT.

5 Experimental Results

The algorithms described in the previous sections were implemented within the
MUS extraction framework of a state-of-the-art MUS extractor MUSer2 4; the
framework was configured to use SAT solver picosat-935 [5] in the incremental
mode. The experiments were performed on an HPC cluster, where each node
is dual quad-core Intel Xeon E5450 3 GHz with 32 GB of memory. Each algo-
rithm was run with a timeout of 1800 seconds and a memory limit of 4 GB per
input instance. To evaluate the algorithms, we selected 300 problem instances
from practical application domains of SAT used in past SAT competitions 5.
The instances were selected using the following criteria: the instance is solvable
within 1 second by picosat-935, and the number of clauses in the instance
is less than 100,000. These criteria were derived from the worst-case analysis
of deletion-based MES algorithms (whereby the number of SAT calls is linear
in the size of the input formula) and our previous experience with the effects
various optimization techniques in the context of MUS extraction.

The cactus plot6 in Fig. 2 provides an overview of the results of our experi-
mental study. The legend in this, and the subsequent plots, is as follows: DEL
represents the implementation of the deletion-based algorithm (Algorithm 1);
INS (resp. DICH) is the implementation of insertion-based (resp. dichotomic)
algorithms from Section 3.1; +MR indicates the addition of model rotation,
while +IMR indicates the addition of the improved version of model rotation
(cf. Section 3.2); GRP-MUS is the implementation of the reduction of MES to

4 http://logos.ucd.ie/wiki/doku.php?id=muser.
5 http://www.satcompetition.org/.
6 Cactus plots show the sorted run times of algorithms over all instances and are

commonly used in SAT competitions to compare performance of multiple solvers.

http://logos.ucd.ie/wiki/doku.php?id=muser
http://www.satcompetition.org/

On Computing MESes 13

Fig. 2. Cactus plot with the run times of all algorithms.

group-MUS from Section 3.3; CHUNK-x is the implementation of the deletion-
based chunked group-oriented MUS algorithm from Section 3.3 with chunk size
x; VBS refers to a virtual best solver 7 — we elaborate on its composition shortly.

A number of conclusions can be drawn from the plot in Fig. 2. First, we note
that the improvements to the plain deletion-based algorithm (DEL) suggested
in Section 3.1, namely the addition of model rotation (DEL+MR) and the im-
proved model rotation (DEL+IMR), have a very significant positive effect on
the performance of the algorithm; also observe that the improved model rota-
tion provides a notable boost over model rotation. Further, it is clear that the
the insertion-based and the dichotomic algorithms, even with the addition of
IMR, do not scale. As a side note, the gap between the performance of these and
the deletion-based algorithm in the MES setting is significantly larger than that
in the MUS setting (see for example [28]) — this is due to the addition of the
negation of the working formula, which is unavoidable in the MES setting. We
also observe the weak performance of the GRP-MUS approach — this is not sur-
prising, since for large formulas, GRP-MUS can produce hard instances of SAT;
this deficiency, in fact, was the motivation for the chunked approach. While
DEL+IMR is among the best performing algorithms, on most of the instances
it is significantly outperformed by the chunked group-oriented MUS algorithm
with chunk size 1000. However, CHUNK-1000 loses to DEL+IMR on some of
the hard instances — increasing the chunk size to 4000 pushes the performance
of the algorithm ahead, however a further increase of chunk size to 8000 begins
to affect the performance negatively. The VBS in Fig. 2 is constructed from
DEL+IMR, GRP-MUS, CHUNK-1000 and CHUNK-4000. The former two are

7 VBS represents a solver obtained from running a number of algorithms in parallel.
It can be seen as a naive portfolio solver — we note that portfolio solvers are the
current tour de force in SAT solving.

14 Belov, Janota, Lynce and Marques-Silva

Fig. 3. Top and bottom-left: selected scatter plots (timeout 1800 sec.); color range
represents % of redundant clauses in an instance. Bottom-right: cumulative histogram
of the % of redundant clauses in the set of instances; note that the histogram is rotated
90◦ to be consistent with the cactus plot in Fig.2.

taken because they represent the extremes of the chunked approach — chunks
of size 1 for DEL+IMR and a single chunk of the size of the input formula for
GRP-MUS. The fact that the results for the VBS configuration (285 solved in-
stances) are clearly superior to any of the individual algorithms indicates that
the proposed algorithms are highly complementary, and are suitable for a multi-
core/portfolio implementation. We emphasize that the plain deletion-based DEL
is, to our knowledge, the current published state-of-the-art in MES computation,
and so the algorithms proposed in this paper constitute a significant advance-
ment, with the best algorithms solving more than twice the number of instances
within the timeout.

The scatter plots in Fig. 3 provide additional insights into the performance of
some of the algorithms. The color code indicates the amount of redundant clauses
in the formulas: yellow (lighter) indicates close to 100% redundant clauses,
whereas blue (darker) indicates less than 20% redundant clauses. The top-left
plot (DEL vs. DEL+IMR) demonstrates the impact of improved model rotation
(IMR) on the performance of the deletion-based approach. We note that while
IMR allows to solve significantly more instances (263 vs 144 – see Fig. 2), the

On Computing MESes 15

technique has little impact on many highly redundant instances (yellow). This
behaviour is expected as IMR can only help to detect irredundant clauses, and
it was the motivation for the development of the group-MUS approach. The top-
right plot of Fig. 3 (GRP-MUS vs. DEL+IMR) demonstrates the effectiveness
of the group-MUS approach on the highly redundant instances. The plot clearly
shows that the direct and the group-MUS approaches are complementary – the
former excels on mostly irredundant instances, while the latter is best on highly
redundant ones. This observation provides additional, empirical, justification for
the development of the chunked group-oriented MUS algorithm. The bottom-left
plot (DEL vs. CHUNK-4000) confirms the effectiveness of the chunked approach
— we observe significant performance improvements on instances with diverse
degrees of redundancy.

The bottom-right plot in Fig. 3 presents the cumulative histogram of the de-
gree of redundancy in the problem instances used in our experiments. Note that
the instances were selected from the SAT competition benchmark sets prior to
the experiments, and so the selection was not biased by the degree of redundancy.
Nevertheless, approximately 2/3 of the instances have between 20% and 50% re-
dundant clauses, the remaining instances have over 50% redundant clauses, and
close to 5% of the instances have in excess of 90% redundant clauses. We conclude
that problem instances from practical applications may exhibit very significant
levels of redundancy.

6 Conclusions

This paper proposes novel algorithms for computing MESes. The main contri-
butions of the paper can be summarized as follows: (i) Adapting existing MUS
extraction algorithms for MES extraction; (ii) Development of model rotation
for MES extraction, and analysis of why clause set refinement cannot be applied;
(iii) Reduction of MES to group-MUS extraction, which enables both model ro-
tation and clause set refinement to be applied; (iv) Use of chunks for incremental
reduction of MES to group-MUS extraction, aiming at reducing the hardness of
instances of SAT when the formula includes the negation of a CNF formula; and
(v) Development of a solution for the independent certification of the correct-
ness of computed MESes. The experimental results indicate that the algorithms
proposed in this paper improve the direct approach [7] significantly, more than
doubling the number of instances that can be solved, and with significant per-
formance gains, which can exceed one order of magnitude.

The experimental evaluation carried out in the paper demonstrates that the
developed algorithms are relevant for the practical applications of SAT. Indeed,
our results show that many real-world SAT instances have significant percent-
ages of redundant clauses. These findings clearly motivate revisiting the CNF
encoding techniques used for generating these instances.

Although in this paper we do not address group-MES computation problem
explicitly, the algorithms developed in the paper can be extended without dif-
ficulty to this setting. This could enable the identification and the removal of
redundant constraints in other domains, such as CSP [12,10,9], SMT [35], and
Ontologies [19]. This is the subject of future work.

16 Belov, Janota, Lynce and Marques-Silva

References

1. A. Atserias, J. K. Fichte, and M. Thurley. Clause-learning algorithms with many
restarts and bounded-width resolution. J. Artif. Intell. Res., 40:353–373, 2011.

2. G. Ausiello, A. D’Atri, and D. Saccà. Minimal representation of directed hyper-
graphs. SIAM J. Comput., 15(2):418–431, 1986.

3. R. R. Bakker, F. Dikker, F. Tempelman, and P. M. Wognum. Diagnosing and
solving over-determined constraint satisfaction problems. In IJCAI, pages 276–
281, 1993.

4. A. Belov and J. Marques-Silva. Accelerating MUS extraction with recursive model
rotation. In FMCAD, pages 37–40, 2011.

5. A. Biere. Picosat essentials. Journal on Satisfiability, Boolean Modeling and Com-
putation, 4:75–97, 2008.

6. A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfiabil-
ity, volume 185 of Frontiers in Artificial Intelligence and Applications. IOS Press,
2009.

7. Y. Boufkhad and O. Roussel. Redundancy in random SAT formulas. In AAAI,
pages 273–278, 2000.

8. J. W. Chinneck and E. W. Dravnieks. Locating minimal infeasible constraint sets
in linear programs. INFORMS Journal on Computing, 3(2):157–168, 1991.

9. A. Chmeiss, V. Krawczyk, and L. Sais. Redundancy in CSPs. In ECAI, pages
907–908, 2008.

10. C. W. Choi, J. H.-M. Lee, and P. J. Stuckey. Removing propagation redundant
constraints in redundant modeling. ACM Trans. Comput. Log., 8(4), 2007.

11. J. L. de Siqueira N. and J.-F. Puget. Explanation-based generalisation of failures.
In ECAI, pages 339–344, 1988.

12. A. Dechter and R. Dechter. Removing redundancies in constraint networks. In
AAAI, pages 105–109, 1987.

13. N. Dershowitz, Z. Hanna, and A. Nadel. A scalable algorithm for minimal unsat-
isfiable core extraction. In SAT, pages 36–41, 2006.

14. C. Desrosiers, P. Galinier, A. Hertz, and S. Paroz. Using heuristics to find minimal
unsatisfiable subformulas in satisfiability problems. J. Comb. Optim., 18(2):124–
150, 2009.

15. O. Fourdrinoy, É. Grégoire, B. Mazure, and L. Sais. Eliminating redundant clauses
in SAT instances. In CPAIOR, pages 71–83, 2007.

16. S. M. González and P. Meseguer. Boosting MUS extraction. In SARA, pages
285–299, 2007.

17. É. Grégoire, B. Mazure, and C. Piette. MUST: Provide a finer-grained explanation
of unsatisfiability. In CP, pages 317–331, 2007.

18. É. Grégoire, B. Mazure, and C. Piette. On approaches to explaining infeasibility
of sets of Boolean clauses. In ICTAI, pages 74–83, November 2008.

19. S. Grimm and J. Wissmann. Elimination of redundancy in ontologies. In ESWC,
pages 260–274, 2011.

20. P. L. Hammer and A. Kogan. Optimal compression of propositional horn knowledge
bases: Complexity and approximation. Artif. Intell., 64(1):131–145, 1993.

21. F. Hemery, C. Lecoutre, L. Sais, and F. Boussemart. Extracting MUCs from
constraint networks. In ECAI, pages 113–117, 2006.

22. M. Jarvisalo, M. Heule, and A. Biere. Inprocessing rules. In IJCAR, 2012. In Press.
Available from http://fmv.jku.at/papers/JarvisaloHeuleBiere-IJCAR12.pdf.

23. U. Junker. QUICKXPLAIN: Preferred explanations and relaxations for over-
constrained problems. In AAAI, pages 167–172, 2004.

http://fmv.jku.at/papers/JarvisaloHeuleBiere-IJCAR12.pdf

On Computing MESes 17

24. O. Kullmann. Constraint satisfaction problems in clausal form II: Minimal unsat-
isfiability and conflict structure. Fundam. Inform., 109(1):83–119, 2011.

25. P. Liberatore. Redundancy in logic I: CNF propositional formulae. Artif. Intell.,
163(2):203–232, 2005.

26. M. H. Liffiton and K. A. Sakallah. Algorithms for computing minimal unsatisfiable
subsets of constraints. J. Autom. Reasoning, 40(1):1–33, 2008.

27. J. Marques-Silva. Minimal unsatisfiability: Models, algorithms and applications.
In ISMVL, pages 9–14, 2010.

28. J. Marques-Silva and I. Lynce. On improving MUS extraction algorithms. In SAT,
pages 159–173, 2011.

29. A. Nadel. Boosting minimal unsatisfiable core extraction. In FMCAD, pages 121–
128, October 2010.

30. M. Niepert, D. V. Gucht, and M. Gyssens. Logical and algorithmic properties of
stable conditional independence. Int. J. Approx. Reasoning, 51(5):531–543, 2010.

31. C. Piette. Let the solver deal with redundancy. In ICTAI, pages 67–73, 2008.
32. C. Piette, Y. Hamadi, and L. Sais. Efficient combination of decision procedures

for MUS computation. In FroCos, pages 335–349, September 2009.
33. K. Pipatsrisawat and A. Darwiche. On the power of clause-learning SAT solvers

as resolution engines. Artif. Intell., 175(2):512–525, 2011.
34. D. A. Plaisted and S. Greenbaum. A structure-preserving clause form translation.

Journal of Symbolic Computation, 2(3):293–304, September 1986.
35. C. Scholl, S. Disch, F. Pigorsch, and S. Kupferschmid. Computing optimized repre-

sentations for non-convex polyhedra by detection and removal of redundant linear
constraints. In TACAS, pages 383–397, 2009.

36. S. T. To, T. C. Son, and E. Pontelli. On the use of prime implicates in conformant
planning. In AAAI, 2010.

37. S. T. To, T. C. Son, and E. Pontelli. Conjunctive representations in contingent
planning: Prime implicates versus minimal CNF formula. In AAAI, 2011.

38. H. van Maaren and S. Wieringa. Finding guaranteed MUSes fast. In SAT, pages
291–304, 2008.

	On computing minimal equivalent subformulas
	On Computing Minimal Equivalent Subformulas

