University of Limerick
Browse

Towards the automatic detection of efficient computing assets in a heterogeneous cloud environment

Download (112.98 kB)
conference contribution
posted on 2013-09-09, 14:33 authored by Jesus Omana Iglesias, Nicola Stokes, Anthony Ventresque, Liam Murphy, James Thorburn
In a heterogeneous cloud environment, the manual grading of computing assets is the first step in the process of configuring IT infrastructures to ensure optimal utilization of resources. Grading the efficiency of computing assets is however, a difficult, subjective and time consuming manual task. Thus, an automatic efficiency grading algorithm is highly desirable. In this paper, we compare the effectiveness of the different criteria used in the manual grading task for automatically determining the efficiency grading of a computing asset. We report results on a dataset of 1,200 assets from two different data centers in IBM Toronto. Our preliminary results show that electrical costs (associated with power and cooling) appear to be even more informative than hardware and age based criteria as a means of determining the efficiency grade of an asset. Our analysis also indicates that the effectiveness of the various efficiency criteria is dependent on the asset demographic of the data centre under consideration

History

Publication

IEEE 6th International Conference on Cloud Computing;

Publisher

IEEE Computer Society

Note

peer-reviewed

Other Funding information

SFI

Rights

“© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.”

Language

English

Usage metrics

    University of Limerick

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC