University of Limerick
Browse

Using context and behavioral patterns for intelligent traffic management

Download (249.62 kB)
conference contribution
posted on 2012-06-29, 09:09 authored by Derek Fagan, Rene Meier
The integration of information and communications technologies across existing transportation infrastructure, systems and vehicles is fundamental to reducing traffic congestion, to improving driver safety, and to improving traveler experiences. Central to such intelligent traffic management are techniques and algorithms that are capable of analyzing the wealth of available contextual sensor data in “real time”. Initial existing approaches tend to apply probability models and inference techniques to optimize traffic flow but fail to take into account certain aspects of human behavior that can affect the flow of traffic, such as patterns in human travel behavior. In this paper we explore how vehicle context information can be combined with the behavioral patterns of travelers to facilitate and improve intelligent traffic management. We present services for deriving reports on vehicle journeys that assist in the analysis of route performance, for enabling passengers to have remote access to real-time route performance information, and for the observation, learning, and utilization of human travel behavior patterns. These services provide essential traffic analysis information that is ultimately expected to lead to further improvements in intelligent traffic management, which aims at easing the flow of traffic in urban and suburban environments.

History

Publisher

Association for Computing Machinery

Note

peer-reviewed

Other Funding information

SFI

Rights

"© ACM, 2009. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Proceedings of the 1st International Workshop on Context-Aware Middleware and Services: affiliated with the 4th International Conference on Communication System Software and Middleware (COMSWARE 2009) http://dx.doi.org/10.1145/1554233.1554248

Language

English

Usage metrics

    University of Limerick

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC