
Variability management in software product lines: a systematic reviewVariability management in software product lines: a systematic review

Lianping Chen, Muhammad Ali Babar, Nour Ali

Publication datePublication date

01-01-2009

Published inPublished in

13th International Software Product Line Conference;

LicenceLicence

This work is made available under the CC BY-NC-SA 1.0 licence and should only be used in accordance with
that licence. For more information on the specific terms, consult the repository record for this item.

Document VersionDocument Version
1

Citation for this work (HarvardUL)Citation for this work (HarvardUL)

Chen, L., Ali Babar, M.and Ali, N. (2009) ‘Variability management in software product lines: a systematic
review’, available: https://hdl.handle.net/10344/1168 [accessed 25 Jul 2022].

This work was downloaded from the University of Limerick research repository.

For more information on this work, the University of Limerick research repository or to report an issue, you can
contact the repository administrators at ir@ul.ie. If you feel that this work breaches copyright, please provide
details and we will remove access to the work immediately while we investigate your claim.

https://creativecommons.org/licenses/by-nc-sa/1.0/
mailto:ir@ul.ie

Variability Management in Software Product Lines: A Systematic Review

Lianping Chen, Muhammad Ali Babar, Nour Ali
Lero, the Irish Software Engineering Research Centre, University of Limerick, Ireland

{lianping.chen, malibaba, nour.ali}@lero.ie

Abstract

Variability Management (VM) in Software Product

Line (SPL) is a key activity that usually affects the degree
to which a SPL is successful. SPL community has spent
huge amount of resources on developing various
approaches to dealing with variability related challenges
over the last decade. To provide an overview of different
aspects of the proposed VM approaches, we carried out a
systematic literature review of the papers reporting VM in
SPL. This paper presents and discusses the findings from
this systematic literature review. The results reveal the
chronological backgrounds of various approaches over
the history of VM research, and summarize the key issues
that drove the evolution of different approaches. This
study has also identified several gaps that need to be filled
by future efforts in this line of research.

Keywords: Software product lines, variability
management, systematic reviews

1. Introduction

Software Product Line Engineering (SPLE) intends to
develop software-intensive systems using platforms and
mass customisation [1, 2]. This is achieved through the
identification and management of commonalities and
variations in a set of systems’ artefacts such as
requirements, architectures, components, and test cases. In
SPLE, variability provides the required flexibility for
product differentiation and diversification. Variability
refers to the ability of an artefact to be configured,
customized, extended, or changed for use in a specific
context [3]. Variability Management (VM) encompasses
the activities of explicitly representing variability in
software artefacts throughout the lifecycle, managing
dependencies among different variabilities, and supporting
the instantiations of those variabilities [4]. It involves
extremely complex and challenging tasks, which needs to
be supported by appropriate approaches, techniques, and
tools [4, 5]. Systematically identifying and appropriately
managing variabilities among different systems of a family
are the key characteristics that distinguish SPLE from
other reuse-based software development approaches [5].

Given such a vital role of VM in SPLE, there has been
a great deal of research in this area of SPLE. Many diverse
approaches have been developed with the basic aim of
supporting (or automating) various tasks involved in VM
at different stages of a product line’s life. However, there
has been no effort to systematically survey the VM
approaches reported in the literature in order to understand
their evolutionary paths, inter-relationships, and the
motivational issues. Hence, we decided to conduct a
Systematic Literature Review (SLR) [6] or Systematic
Review (SR) of the literature on VM in SPLE in order to
summarize the state of the art in VM research. The
specific research questions that motivated our study are:

• What approaches have been proposed for
managing variability in software product lines?

• How has the research on developing VM
approaches been evolved?

• What are the key issues that have drove the
evolution of different VM approaches?

Previously, there have been a few efforts to survey the
literature on VM in Software Product Lines (SPL) [7, 8].
However, these efforts were aimed at studying very
concrete elements of VM (i.e., modeling [7] and
realization mechanisms [8]). Our research has completely
different goals as stated before and we have used a
systematic and rigorous approach to identifying and
selecting the reviewed primary studies. Our study is based
on a systematic search of publications from various data
sources and follows a pre-defined protocol during the
whole process. None of the previous surveys followed a
systematic selection process of the reviewed studies; nor
did they focus on revealing the chronology of VM
research in SPL over the years.

In the rest of the paper, Section 2 describes the research
methodology used. Section 3 presents and discusses the
results, while Section 4 closes the paper by describing the
main conclusions.

2. Research Methodology

As we have mentioned, this study has been carried out
according to the SR methodology described in [6]. Since
recently many published studies have described the
methodology, logistics, benefits, and limitations of SRs in
software engineering, we only discuss the key aspects of

the methodology used for the reported research. However,
we followed all the stages and steps recommended in
Kitchenham’s guidelines [6].

2.1. Search Strategy and Data Sources

The search strings used in this review were constructed

using the following strategy:
• Derive main terms based on the research question

and the topics being researched;
• Determine and include synonyms, related terms,

and alternative spelling for major terms;
• Check the keywords in all relevant papers

researchers already knew for example [4, 7, 9] and
initial searches on the relevant databases;

• Incorporate alternative spellings and synonyms
using Boolean “or”;

• Link main terms using Boolean “and”;
• Pilot different combinations of the search terms.
Following this strategy, we constructed the search

strings as bellow:
<<software AND (product line OR product lines OR

product family OR product families) AND (variability OR
variation OR variant)>>

The final search terms were constructed after a series of
test executions and reviews. Due to the varying nature of
the search features provided by the main digital sources of
literature (such as IEEExplore, SpringerLink, and ACM
Digital Library), it was not possible to use a single search
string for all the digital sources. Hence, like others [9], we
also used different search strings for different sources with
the exception of the ACM Digital Library where we had to
construct three different search strings. If it was not
possible to have syntactically identical search strings for
all the searched databases, we made every effort to ensure
that the search strings used were logically and
semantically equivalent. Three researchers were involved
in this process. All of them continuously discussed and
refined the search strings until they were fully satisfied
with the capability of the used search strings.

We searched the primary studies in these digital
sources (1. IEEExplore; 2. ACM Digital library; 3.
Citeseer library (Google); 4. ScienceDirect; 5. EI
Compendex / Inspec; 6. SpringerLink; and 7. Web of
Science). As an indication of inclusiveness, the results
were checked for three known relevant papers (i.e. [4, 7,
10]). All three relevant papers were found in the search
results. Apart from those electronic databases, we also
manually checked two sources for primary studies: (1.
SPLC conference series’ proceedings that are not available
online; and 2. SEI’s technical reports on SPL). One of the
well known papers, Feature-Oriented Reuse Method
(FORM) [11], was not brought by our authormatic search.
An investigation revealed that it did not use any of the

keywords used in our automatic search string. We
acquired that paper and included in our review. We
searched the papers from December 2007 to January 2008.
That means the papers published after that date were not
reviewed.

Give our limited resources, it was not possible for us to
cover all the potential publication venues of SPL
literature. That was why we targeted those forums where
SPL researchers are expected to publish their work. So the
VM approaches published in venues other than the ones
we searched for our SR. We purposely left out the
approaches that only tackle variability at the
implementation stage. A collection of variability
implementation mechanisms is reported in [8]. The quality
of search engines could have influenced the completeness
of the identified primary studies. That means our search
may have missed those studies whose authors would have
used other terms to specify variability in software product
line or would not have used the keywords that we used for
the searches in the title, abstract, and keywords parts of
their papers.

2.2. Study Selection

We found 628 papers from all sources after removing
the duplicates. The papers were downloaded into an
Endnote library where all duplicates were removed. We
used a staged study selection process. In the first stage, a
paper was included if it:

• introduces an approach to dealing with some
aspect of VM in SPLE or;

• reports an evaluation of a VM approach.
The paper was excluded if:
• it does not deal with VM in SPLE.
After the first stage, 261 papers were selected. In the

second stage, we limited the publication venues to
international journals (not include magazines) and
proceedings of SPLC and PFE series. 70 papers were left
at this stage. During the third stage, we investigated each
of the 70 papers, and excluded every paper if it:

• only focuses on variability implementation
mechanisms;

• introduces approaches in a particular domain,
which do not have generic applicability;

• only presents concepts or conceptual framework
(e.g. [12]) instead of concrete and well formed
approach;

• only addresses a particular quality attribute;
• is a secondary study;
• is a short paper.
After this stage, there were 34 papers, which were

included for extracting and analysing the data.

2.3. Data Extraction and Synthesis

We fully read each of the 34 papers for extracting the

required data. We used a predefined form consisting of a
number of attributes for extracting and storing the data.
These attributes were expected to be required in order to
answer our main research questions. This paper does not
include the data extraction form because of space limit.
Three researchers were involved in extracting and
verifying the data. Since most of the selected studies were
grounded in qualitative research, a meta-analytical
approach was not suitable for synthesizing the data. We
decided to manually review and link the extracted data.
We decided to group the issues that the reviewed studies
claimed to address. We used the affinity diagram [13]
process for grouping the issues. This approach fitted well
with our data analysis requirements as it allows mutually
inclusive categories.

The grouping of issues was performed by two
researchers in face to face meetings. The issues for each
paper were written down on post-it notes, which were
plotted on a white board. The post-it notes were grouped
on the white board. Each group was given a name. If one
paper raised issues in more than one groups, a duplicate
post-it for that paper was put under each group. These
groups were further clustered to higher-level groups.
Then, we used descriptive statistics (e.g. sum, average) for
analysing the data.

Table 1: Distribution of studies based on

publication venues
Venue Type #
SPLC C 12
PFE W 6
SCP J 4
IEE Proceedings-Software J 2
TSE J 1
SoSyM J 1
SPE J 1
RE J 1
JSS J 1
IMDS J 1
Computer Networks J 1
Annals of Software Engineering J 1
Advanced Engineering Informatics J 1
SEI Technical Report TR 1
 Total 34

3. Results and Discussion
3.1. Demographic Data

Table 1 gives an overview of the studies according to
publication venues. We notice that the SPLC and PFE
series have the largest number of papers, followed by

Journal of Science of Computer Programming (SCP),
which had a special issue on VM in 2004. All of those 4
papers appeared in that issue. Regarding the year of
publication, as shown in table 2, the first paper we
identified was in 1990. Our SR revealed two peak periods
of VM publications in 2002 and 2004, with 9 and 11
papers published respectively. It should be noted that the
proceedings of 2001 edition of PFE were published in
2002, from which 3 papers were included. The paper in
2008 was fetched by our search, because the search phase
finished in January 2008, and the paper was available
online at that time.

Table 2: Number of papers in each year

3.2. Overview of the Reviewed Approaches

We found that two of the reviewed 34 papers presented

the same approach. Hence, our analysis is based on 33
approaches. If an approach has a name, we have used that
name. Otherwise, we have given a name to an approach
for this study by using the first author’s surname followed
by the publication year, for example Muthig’02. Table 3
lists each of the 33 approaches in chronological order of
publication. In this review, the approach, their origin and
short description have been identified based on what is
stated in each of the reviewed paper. In Table 3, the
column “approach” contains the name of the approach
given by the authors or by us, the column “paper”
provides the reference to the paper (s) that has reported the
approach. The last column gives a short description of
each approach.

The approaches described in the reviewed papers are
quite diverse, in terms of goals, philosophy of approach
design, techniques used for modeling variability, process
support, and so on. For example, a large majority of them
are feature oriented approaches, like Feature-Oriented
Domain Aanalysis (FODA) [14] and its extensions. Some
approaches are architecture-centric such as Hoek’04 [15],
Koalish [16], and Thiel’02 [17]. Some of the approaches
are configuration-based like Krueger’02 [18], COVAMOF
[19], Koalish [16], and Kumbang [20]. Others attempt to
extend UML to model variability like VPM [10] and
Halmans’03 [21]. Some of the approaches focus on the
separating variability representation from the
representation of various SPLE artifacts such as
Bachmann’04 [22] and Muthig’02 [23]. The developers of
some approaches emphasize the importance of notation
independency and customizability to facilitate ease of
adoption like Schmid’04 [4]. The main focus of FAST

[24] is providing process support without prescribing a
specific VM model. Some VM approaches mainly focus
on supporting the identification of variability and
commonality such as DRM [25], and Moon [26]. While
Loesch’07 [27] only focuses on variability optimization in
terms of identifying and removing obsolete variabilities
from SPL assets.

Table 3: List of approaches reviewed

Approach Pape

r
Short description

FODA [14] Feature-oriented domain
analysis

FORM [11] Feature-oriented, extended
FODA for design and
implementation

FAST [24] Process focused
SPLIT [28] Software product line

integrated technology
KobrA [29] Component based
Muthig’02 [23] Model-driven architecture,

decision model based
Thiel’02 [17] Architecture centric, extended

IEEE P1471
Krueger’02 [18] Configuration-based, operate

on the file system level
Ferber’02 [30] Feature interaction and

dependencies
Fey’02 [31] Feature modeling, enhance

usability and usefulness
Becker’02 [32] Comprehensive variability

modeling
Capilla’02 [33] Include numerical values in

feature modeling
Salicki’02 [34] Variability description and

usage
FDL [35] Feature description language
Halmans’03 [21] Extended use case diagram
Bachmann’04 [22] Orthogonal variability

modeling
VPM [10] Extended UML, modeling

variation point
Jansen’04 [36] Relates features to a

component role model
Koalish [16] Product configuration based,

architecture-centric
COVAMOF [19,

37]
First-class representation of
complex dependencies,
modeling dependency
interactions, product
derivation

Schmid’04 [4] Customizable, notation
independent, full life cycle

Table 3: List of approaches reviewed (continued)
RequiLine [38] Tool support for RE, feature

model based
CBFM [39] Staged configuration,

cardinality based feature
model

CONSUL [40] Feature model based, full life
cycle support

Hoek’04 [15] Architecture-centric, any-time
variability

DRM [25] Scenario, goal and feature-
oriented

Moon’05 [26] Rational (objective) C&V
identification

Ye’05 [41] Modeling feature variability
and dependencies, two views

Brown’06 [42] Weaving behavior to feature
models

Schobbens’0
7

[43] Formalization of feature
diagram, generic semantics

Loesch’07 [27] Optimization of variability
Reiser’07 [44] Multi-level feature trees
Kumbang [20] Domain ontology for

modeling variability

We did not intend to propose a taxonomic classification
of VM approaches. Considering the significantly diverse
nature of the reported approaches, we believe that it would
be quite difficult to find a classification scheme that can
help categorize the current VM approaches satisfactorily
(i.e, cleanly, succinctly, meaningfully, and completely).
Rather, our objective was to analyse the reported
approaches to provide the SPL community (i.e.,
researchers and practitioners) with an overview of the VM
approaches in SPLE from two key view points:

• Chronological view, which sketches the
proposition of the approaches over the history of
VM research;

• Issues view, which sketches the issues different
VM approaches claim to address over the years.

We have identified various variability models used by
different approaches. We also looked into the software
development life cycle stages, which have attracted most
of the research efforts.

3.3. Chronological Overview

Figure 1 shows the chronological history of the
reviewed approaches and their relationships with each
others. In Figure 1, the continuous lines indicate that the
latest approaches are either based on, or receive
inspiration from, the previous approaches. The dotted lines
circle the approaches that share at least one of the authors
of the papers in which the approaches have been

published. The shadowed boxes indicate the approaches
that were not included in this SR because of paper
selection criteria as mentioned in Section 2.2.

This SR has revealed that researchers contributed the
largest number of VM approaches in 2002 (9 approaches)
and 2004 (11 approaches). We have placed the approaches
in different years based on the publication date of the
paper reviewed. Hence, the development date of an
approach may be different.

Figure 1 shows that FODA [14] has the largest number
(13) of approaches that were based on it. Three
approaches were based on Koala [45]. FORM [11],
Muthig’02 [23] CBFM [39], Koalish [16], SPLIT [28],
and Ferber’02 [30] has contributed to the creation of at
least one VM approach. There are several approaches that
were not based on any previous approach as shown in
Figure 1.

FODA focuses on feature-oriented requirements
engineering. FODA was extended by FORM to support
the VM for the design and implementation phases in 1998.
After that, many other approaches have been based on the
feature modeling or its extensions. For example, Ferber’02
[30] has proposed to use a separate view to represent the
feature dependencies and interactions. Ye’05 [41] has
extended Ferber’02’s approach by extending the meaning
of the view (i.e. a view is more than a diagram).
RequiLine [38] has extended feature model to model
reusing features, which might be optional in one domain
and mandatory in another. This extension has been used to
develop a tool for managing variability in requirements.

CBFM [39] and Schobbens’07 [43] have tried to give
formal semantics to feature models in order to improve
precision and semantics. Brown’06 [42] has integrated
behavioral variability into feature models. Reiser’07 [44]
has introduced multi-level concept to feature trees in order
to manage highly complex product families. Moon’05
[26], DRM [25], and Jansen’04 [36], have also employed
feature model. While, we expect that the authors of these
papers were aware of FODA while developing their

respective approaches, however, they did not mention
whether or not their approaches were based on FODA
[14].

Another notable branch of work has been inspired by
Koala [16]. Koala is a component model and an
architectural description language that uses components
and interfaces to specify the logical structure of a software
system. Hoek’04 [15] was inspired by Koala. Koala
resolves all variability at compile time. Hoek’04 differs
from Koala by supporting any-time variability (i.e. support
the resolution of variability in any particular point in the
software life cycle, except phases earlier than
architecture). Koalish [16] has extended Koala with
explicit variability modeling constructs developed in the
product configuration domain [46]. Like Koala, Koalish
does not abstract to features. Kumbang [20] has combined
Koalish with concepts from feature modeling for modeling
a SPL from both features and architectural points of views.
Kumbang is a jointpoint between the FODA inspired and
the Koala inspired approaches. Figure 1 also shows two
relatively small branches of VM approaches. In one
branch, Salicki’02 [34] is based on SPLIT [28]. While
Schmid’04 [4] is highly influenced by Muthig’02 [23].
Like Muthig’02 [23], Schmid’04 is also notation
independent and uses decision model. However,
Schmid’04 is more focused on customizability.

As shown by the dotted lines in Figure 1, FODA [14] and
FORM [11] share the same first author (i.e., Kang).
Kumbang [20] and Koalish [16] share the same authoring
team. KobrA [29] and Muthig’02 [23] have two common
authors (i.e., Atkinson and Muthig). Halmans’03 and
Bachmann’04 have one common author (i.e., Pohl).
COVAMOF, Jansen’04, and Bachmann’04 also have one
common author (i.e., Bosch). Both Pohl and Bosch were also
present in Bachmann’04 [22], which emphasizes the
separation of the representation of variability from the
representation of the various SPLE artifacts. This idea served
as the foundation of several subsequent VM approaches, like
Orthogonal Variability Model (OVM) [47].

Figure 1: VM Approaches reviewed

3.4. Issues Reported or Addressed

In order to identify the key issues that have motivated

the development of different VM approaches, we extracted
and analyzed the issues claimed to be addressed by the
developers of the reviewed approaches. While identifying
the issues claimed to be the motivators for each of the
surveyed approaches, we tried to stick to what the authors
stated in their papers instead of making our own
inferences. We scrutinized the papers following the
chronological order, from the oldest one to the latest one,
during the issue analysis process. We only counted the
prominent issues that were known to be still open at the
time the approach was published, that motivated the
proposition of the approach, and that appear to distinguish
the proposed approach from already existing approaches.

We analyzed the extracted data for grouping the
identified issues using the affinity diagram [13] process as
mentioned in Section 2.3. We classified the found issues
into 10 groups. Table 4 lists the groups of issues and the
respective approaches which were developed to address
those issues. We explain each group of the issues in the
following paragraphs. Each group of issues is referred to
with a code, e.g., IG-1 and IG-2.

Variability modeling (IG-1): The issues categorized in
this group concern the ability of a modeling approach to
satisfactorily capture, organize, and represent variability.
The kinds of issues claimed to be addressed by various
approaches are: deficiency of feature modeling, no
uniform representation of variability throughout the entire
lifecycle, inability to model the details about variation
point for re-users to build variants, inability in describing
complex dependencies and dependency interactions, lack
of precision and formalization of variability modeling,
deficiency in communicating variability to customers.
Table 4 shows that this group of issues has motivated the
creation of the largest number of VM approaches.

Identifying commonality and variability (IG-2): This
group of issues represents a lack of systematic way of
identifying commonality and variability. Practitioners
have to depend on experience and intuition of domain
experts to recognize commonality and variability [26].
How the results of commonality and variability analysis
will satisfy an organization’s high-level business goals is
not directly shown [25].

Process support (IG-3): A general lack of explicit and
systematic process support for managing variability is very
important but not much raised issue.

 Architecture (IG-4): It has been claimed that around
2002 the available VM approaches typically dealt with
requirement level and early life cycle stages such as
domain analysis, product line scoping without paying
sufficient attention to the activities that come later in the
life cycle [17, 23] such as designing and realizing product

line architectures. Hence, new approaches were developed
for VM at the architecture level.

Table 4: Issues by approaches

Product derivation (IG-5): The issues in this group

concern the lack of methodological and tool support for
efficiently and effectively resolving variability to produce
particular products. Table 4 shows that this group of issues
has motivated the development of the second largest
number of VM approaches we reviewed.

Evolution of variability (IG-6): Evolution of variability
is a central issue. Some typical evolution scenarios
include: adding variation points and variants, removing
obsolete variation points and variants, changing
relationships among variation points and variants. Despite
being a vital group of issues, there have been only three
VM approaches that have explicitly claimed to be
motivated by these issues.

Tool support (IG-7): Variability modeling can become
very complex in an industry setting, an adequate tool
support is essential. However, the tool support for VM
appears to be very weak when RequiLine and CONSUL were
developed. However, it may not reflect the current situation
of tooling support for VM.

Customizability (IG-8): This group of issues
characterizes the importance of allowing an organization

Issue Groups Approaches

Variability
Modelling (IG-1)

FODA, FORM, Ferber’02,
Fey’02, CBFM, Brown’06,
Becker’02, Capilla’02,
RequiLine, CONSUL,
Reiser’07, Ye’05, Muthig’02,
Bachmann’04, COVAMOF,
Schmid’04, VPM, Koalish,
Schobbens’07, Kumbang

Identifying C&V
(IG-2)

FODA, Moon’05, DRM

Process Support
(IG -3) FAST, SPLIT

Architecture (IG-4)
SPLIT, KobrA, Muthig’02,
Thiel’02

Product derivation
(IG-5)

Salicki’02, Jansen’04,
COVAMOF, FDL, CBFM,
Koalish, Krueger’02

Evolution of
variability (IG-6) FDL, Ye’05, Loesch’07

Tool support (IG-7) RequiLine, CONSUL
Customizability
(IG-8) Schmid’04

Binding time (IG-9) Hoek’04

Scalability (IG-10) Ye’05, Reiser’07

to keep as many of the existing notations and approaches
as possible to support VM [4].

Binding time (IG-9): The ability to resolve variability
at any point in the lifecycle is required due to the presence
of significantly increased and dissimilar levels of
variability in software systems. However, the time at
which a variability has be resolved after its introduction
was limited to only a single point in the solutions available
before Hoek’04 [15].

Scalability (IG-10): When the number of variation
points, variants, and the variability relationships and
interactions become very large and complex, the
complexity of variability modeling may substantially
increase to a level where it is uncontrollable. Therefore,
scalability of variability modeling is a key issue that
should be appropriately addressed [41].

Figure 2: Issues vs. years

Our analysis has also revealed that the issues that have
motivated the development of various approaches are time
dependent. It is interesting to find that a factor that was an
issue in 2000, may not be an issue in 2005 as it might have
been solved by 2005 or might not have been an important
issue anymore.

Figure 2 shows the groups of issues along the years of
their appearance in bubble plot. The X axis represents
year, and Y axis represents the groups of issues. The
number in each parenthesis in front of each issue group
represents the total number of approaches, appeared over
the years, that claim to be motivated by the issues
belonging to that group. The number in the bubble
indicates the number of approaches whose creation was

motivated by the group of issues (represented by the axis
of “issues”) in the year (represented by the axis of “year”).
The size of a bubble is proportional to the number
represented by the bubble. One study may address
multiple issues belonging to multiple issue groups as the
groups of issues are not mutually exclusive.

Figure 2 shows that variability modeling has attracted
most of the attention. FODA was proposed to address the
issues related to commonality and variabilities (i.e., called
differences at that time) in 1990. More than a decade later,
in 2004 and 2005, the C&V identification issues were
again raised. These issues emphasized on rational C&V
identification (i.e. the decision on C&V should be more
rational and objective, rather than relying on experts’
opinion). It is interesting to note that the issues of lack of
systematic process for VM were raised only before 2002.
The lack of systematic approaches to managing variability
in architecture was also raised as an important issue to be
addressed in 2002 and before. The issues regarding
product derivation and evolution of variability were raised
and addressed from 2002 until recently. The issues in the
groups of customazability, tool support, binding time,
scalability were raised as issues from 2004 onward. Only a
few studies have addressed the issues in each of these 4
groups. We also observed that almost all the reviewed
approaches described the issues related to variability
modeling as one of the motivators for developing those
approaches. This finding further provides the evidence
that variability modeling is the most researched area in
SPL, which is also a topic of workshops like VaMos
nowadays. We also found that only two approaches
claimed to be developed for addressing the issues
regarding scalability of variability modeling. It is obvious
that scalability related issues in VM have attracted very
little attention. Hence, there is a need of paying sufficient
attention to these issues.

3.5. Variability Models Used

Since variability modeling is the main area of research
on variability management, our study also attempted to
identify the kinds of variability models used in the
reviewed approaches. It was not a surprise that fourteen
approaches used feature models. Almost each of them had
extended the initial feature model presented in FODA
[14]. The decision modeling was used in six approaches.
We also found that 12 other kinds of variability models
were proposed by various approaches; however, no other
approach used any of them. Though, it is not the claim of
the developers of FAST and Loesh’07, our conclusion is
that both approaches are independent of any particular
way of modeling variability.

The use of feature modeling is evenly distributed over
the years starting from 1990. However, the reporting of
new variability models reached its peak in 2004 when 6

new models were proposed. The research on variability
modeling appears to be concentrated into 2 main streams:
extending traditional software development models that
are in use in different life cycle stages, called integrated
VM; separating the representation of variability from the
representation of the various SPLE artifacts [22], called
orthogonal VM. Halmans’03 [21] and VPM [10] are the
examples of the first stream; while Bachmann’04 [22] and
COVAMOF [33, 34] are the examples of the second
stream. Each stream has its strengths and limitations.
However, a comparative discussion on this topic is not
within the scope of this paper.

3.6. Support for Lifecycle Phases

We also reviewed the VM approaches for their support
during different phases of the SPLE lifecycle. We used the
SPLE lifecycle phases described by Pohl et al. [47]. We
also took the view that architecture phase is a part of
design phase. We found that Requirements phase of
domain engineering attracted the most attention as 23
approaches claimed to tackle VM in Requirements phase.
It is followed by design phase. We did not review the
papers dealing with variability implementation in this
study. Only 1 approach, FAST [24], addressed the test
phase.

Except the testing phase, which appears to attract
relative little attention in both domain engineering and
application engineering, all phases of application
engineering have also received a lot less attention than
their counterparts in domain engineering.

According to our analysis, only FAST, which mainly
contributes to the process aspects of VM, can be
considered covering the full life cycle phases, from
Requirements engineering to testing. Some approaches,
FORM [11], SPLIT [28], KobrA [29], Muthig’02 [23],
Schmid’04 [4], CONSUL [40] and etc., also intended to
provide comprehensive lifecycle coverage. However, our
conclusion is that they do not address the testing phase
specifically. One approach, Loesch’07 [27], does not
address any particular phase of SPLE lifecycle. However,
it appears to tackle the problems often happen in the
maintenance phase.

4. Conclusions

In this paper, we present the results from a SR of VM
research in SPL. We believe that the results provide
interesting insights into the current status of VM research
with respect to the historical background of different VM
appraochs, the issues that motivated their creation,
different variability models used by them, and their
support for the different phases of SPLE. This SR has also
identified certain gaps that need to be filled by future
research. This SR has enabled us to make the following

conclusions in order to highlight the areas, which need
immediate attention by researchers and practitioners. We
believe that more active collaboration between these two
communities is expected to result in VM technologies,
which would have higher potential of industrial adoption.

There is only little, if any, experimental or detailed
comparative analysis to show the relative advantages and
disadvantages of different VM approaches. That is why it
would be hard to build an evidence-based guidance for
selecting a VM approach for specific development
situation and context. Hence, there is a vital need of
conducting comparative analysis of different approaches
in order to provide the practitioners with a qualified
portfolio of techniques.

The reviewed VM approaches share significant number
of commonalities. However, we have not found a
reference model encompassing the large number of
different approaches. We assert that there should be a
reference model to support model transformation and
future research in this area.

Only a few approaches tackle the issues regarding
systematic process support for VM. The approaches that
do provide process support such as FAST [24] and SPLIT
[28] were mainly designed for SPLE in general. The
process support specifically for VM appears to be a
neglected area of research.

There are only 3 approaches, (FDL [35], Ye’05 [41] and
Loesch’07 [27]), which are concerned with evolution of
variability. However, we have found that these approaches
provide very limited support for evolution of variability.
Hence, we can conclude that a systematic approach to
provide a comprehensive support for variability evolution
is not available.

This SR also revealed that except Ye’05 [41] and
Reiser’07 [44] no other VM approach has mentioned the
scalability as an issue to be addressed. However, most of
the current VM approaches have often been criticized for
their inability to scale to large and complex product lines.
Hence, researchers need to pay attention to the scalability
aspects of VM approaches.

Among all the reviewed approaches, only one approach
(FAST [24]) explicitly mentions testing. However, its
treatment of testing is very limited as it only provides
some strategies and suggestions instead of a systematic
and concrete approach. Other quality assurance techniques
like inspection and review were not mentioned at all in the
reviewed approaches. However, the experiment by Denger
and Kolb [48] found that traditional testing and inspection
techniques used in single system development were
ineffective in identifying variant-specific defects. The
adaptation of these quality assurance techniques to
effectively handle variability in SPLE is still a key
challenge in this area, which needs to be addressed by
future research.

5. Acknowledgements

This work is partly supported by Science Foundation
Ireland under the grant no. 03/CE2/I303_1. We would also
like to thank Prof. Kyo-Chul Kang for his valuable
discussion with us on the topic covered in this paper.

6. References

[1] P. Clements and L. Northrop, Software Product Lines:

Practices and Patterns: Addison-Wesley, 2002.
[2] J. Bosch, Design & Use of Software Architectures: Adopting

and evolving a product-line approach: Addison-Wesley,
2000.

[3] F. Bachmann and P. Clements, Variability in Software
Product Lines, Software Engineering Institute, Pittsburgh,
USA, Technical Report CMU/SEI-2005-TR-012, 2005.

[4] K. Schmid and I. John, A customizable approach to full
lifecycle variability management, Sci. Comput. Program.,
vol. 53, pp. 259-284, 2004.

[5] J. Bosch, G. Florijn, D. Greefhorst, J. Kuusela, J. Obbink, and
K. Pohl, "Variability Issues in Software Product Lines," in
Softw Product-Family Eng (PFE-4): Springer, 2002, pp.
303-338.

[6] B. Kitchenham and S. Charters, Guidelines for Performing
Systematic Literature Reviews in Software Engineering,
Keele University, UK EBSE-2007-1, 2007.

[7] M. Sinnema and S. Deelstra, Classifying variability modeling
techniques, Information and Software Technology, vol. 49,
pp. 717-739, 2007.

[8] M. Svahnberg, J. van Gurp, and J. Bosch, A taxonomy of
variability realization techniques, Softw. Pract. Exper., vol.
35, pp. 705-754, Jul 2005.

[9] B. Kitchenham, E. Mendes, and G. Travassos, Cross versus
within-Company Cost Estimation Studies: A Systematic
Review, IEEE Trans. on Softw Eng, vol. 33, pp. 316-329,
2007.

[10] D. L. Webber and H. Gomaa, Modeling variability in
software product lines with the variation point model, Sci.
Comput. Program., vol. 53, pp. 305-331, 2004.

[11] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh,
FORM: A feature-oriented reuse method with domain-
specific reference architectures, Annals of Software
Engineering, vol. 5, pp. 143-168, 1998.

[12] M. Jaring and J. Bosch, "Representing Variability in
Software Product Lines: A Case Study," in Software
Product Lines (SPLC 2): Springer, 2002, pp. 219-245.

[13] H. Beyer and K. Holtzblatt, Contextual design: defining
customer-centered systems: Morgan Kaufmann Publishers
Inc., 1998.

[14] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A.
S. Peterson, Feature-Oriented Domain Analysis (FODA)
Feasibility Study, SEI Technical Report 1990.

[15] A. van der Hoek, Design-time product line architectures for
any-time variability, Sci. Comput. Program., vol. 53, pp.
285-304, 2004.

[16] T. Asikainen, T. Soininen, and T. Männistö, "A Koala-
Based Approach for Modelling and Deploying Configurable
Software Product Families," in Softw Product-Family Eng
(PFE-5): Springer, 2004, pp. 225-249.

[17] S. Thiel and A. Hein, "Systematic Integration of Variability
into Product Line Architecture Design," in Softw Product
Lines (SPLC2): Springer, 2002, pp. 67-102.

[18] C. Krueger, "Variation Management for Software
Production Lines," in Softw Product Lines (SPLC2):
Springer, 2002, pp. 107-108.

[19] M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch,
"COVAMOF: A Framework for Modeling Variability in
Software Product Families," in Softw Product Lines
(SPLC3): Springer, 2004, pp. 197-213.

[20] T. Asikainen, T. Männistö, and T. Soininen, Kumbang: A
domain ontology for modelling variability in software
product families, Advanced Engineering Informatics, vol.
21, pp. 23-40, 2007.

[21] G. Halmans and K. Pohl, Communicating the variability of a
software-product family to customers, Software and Systems
Modeling, vol. 2, pp. 15-36, 2003.

[22] F. Bachmann, M. Goedicke, J. Leite, R. Nord, K. Pohl, B.
Ramesh, and A. Vilbig, "A Meta-model for Representing
Variability in Product Family Development," in Softw
Product-Family Eng (PFE-5): Springer, 2004, pp. 66-80.

[23] D. Muthig and C. Atkinson, "Model-Driven Product Line
Architectures," in Softw Product Lines (SPLC2): Springer,
2002, pp. 79-90.

[24] M. Ardis, N. Daley, D. Hoffman, H. Siy, and D. Weiss,
Software product lines: a case study, Softw. Pract. Exper.,
vol. 30, pp. 825-847, 2000.

[25] S. Park, M. Kim, and V. Sugumaran, A scenario, goal and
feature-oriented domain analysis approach for developing
software product lines, Industrial Management + Data
Systems, vol. 104, pp. 296-308, 2004.

[26] M. Moon, K. Yeom, and H. S. Chae, An approach to
developing domain requirements as a core asset based on
commonality and variability analysis in a product line,
IEEE Trans. on Softw Eng, vol. 31, pp. 551-569, 2005.

[27] F. Loesch and E. Ploedereder, "Optimization of Variability
in Software Product Lines," in 11th Int’l Softw Product Line
Conf, 2007, pp. 151-162.

[28] M. Coriat, J. Jourdan, and F. Boisbourdin, "The SPLIT
method: building product lines for software-intensive
systems," in 1st Int’l Softw Produt Line Conf Denver,
Colorado, United States: Kluwer Academic Publishers,
2000, pp. 147-166.

[29] C. Atkinson, J. Bayer, and D. Muthig, "Component-based
product line development: the KobrA approach," in 1st Int’l
Softw Produt Line Conf Denver, Colorado, United States:
Kluwer Academic Publishers, 2000, pp. 289-309.

[30] S. Ferber, J. Haag, and J. Savolainen, "Feature Interaction
and Dependencies: Modeling Features for Reengineering a
Legacy Product Line," in Softw Product Lines (SPLC2):
Springer, 2002, pp. 37-60.

[31] D. Fey, R. Fajta, and A. Boros, "Feature Modeling: A Meta-
Model to Enhance Usability and Usefulness " in Softw
Product Lines (SPLC2): Springer, 2002, pp. 198-216.

[32] M. Becker, L. Geyer, A. Gilbert, and K. Becker,
"Comprehensive Variability Modelling to Facilitate
Efficient Variability Treatment," in Softw Product-Family
Eng (PFE-4): Springer, 2002, pp. 294-303.

[33] R. Capilla and J. Dueñas, "Modelling Variability with
Features in Distributed Architectures," in Softw Product-
Family Eng (PFE-4): Springer, 2002, pp. 49-109.

[34] S. Salicki and N. Farcet, "Expression and Usage of the
Variability in the Software Product Lines " in Softw
Product-Family Eng (PFE-4): Springer, 2002, pp. 173-210.

[35] A. van Deursen, M. de Jonge, and T. Kuipers, "Feature-
Based Product Line Instantiation Using Source-Level
Packages " in Softw Product Lines (SPLC2): Springer, 2002,
pp. 19-30.

[36] A. G. J. Jansen, R. Smedinga, J. van Gurp, and J. Bosch,
First class feature abstractions for product derivation, IEE
Proc. - Software, vol. 151, pp. 187-197, 2004.

[37] M. Sinnema and S. Deelstra, Industrial validation of
COVAMOF, Journal of Systems and Software, vol. 81, pp.
584-600, 2008.

[38] T. von der Maßen and H. Lichter, "RequiLine: A
Requirements Engineering Tool for Software Product
Lines," in Softw Product-Family Eng (PFE-5): Springer,
2004, pp. 168-180.

[39] K. Czarnecki, S. Helsen, and U. Eisenecker, "Staged
Configuration Using Feature Models " in Softw Product
Lines (SPLC3): Springer, 2004, pp. 266-283.

[40] D. Beuche, H. Papajewski, and W. Schroder-Preikschat,
Variability management with feature models, Sci. Comput.
Program., vol. 53, pp. 333-352, 2004.

[41] H. Ye and H. Liu, Approach to modelling feature variability
and dependencies in software product lines, IEE Proc. -
Software, vol. 152, pp. 101-109, 2005.

[42] T. J. Brown, R. Gawley, R. Bashroush, I. Spence, P.
Kilpatrick, and C. Gillan, "Weaving behavior into feature
models for embedded system families," in 10th Int’l Softw
Product Line Conf, 2006, pp. 52-61.

[43] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and Y.
Bontemps, Generic semantics of feature diagrams,
Computer Networks, vol. 51, pp. 456-479, 2007.

[44] M.-O. Reiser and M. Weber, Multi-level feature trees: A
pragmatic approach to managing highly complex product
families, Requir. Eng., vol. 12, pp. 57-75, 2007.

[45] R. v. Ommering, F. v. d. Linden, J. Kramer, and J. Magee,
The Koala Component Model for Consumer Electronics
Software, Computer, vol. 33, pp. 78-85, 2000.

[46] T. Soininen, J. Tiihonen, T. Männistö, and R. Sulonen,
Towards a general ontology of configuration, Artif. Intell.
Eng. Des. Anal. Manuf., vol. 12, pp. 357-372, 1998.

[47] K. Pohl, G. Böckle, and F. J. van der Linden, Software
Product Line Engineering: Foundations, Principles and
Techniques: Springer, 2005.

[48] C. Denger and R. Kolb, "Testing and inspecting reusable
product line components: first empirical results," in 2006
ACM/IEEE Int’l Symposium on Empirical Softw Eng Rio de
Janeiro, Brazil: ACM, 2006.

	Variability management in software product lines: a systematic review

