University of Limerick
Browse

APTES duality and nanopore seed regulation in homogeneous and nanoscale-controlled reduction of Ag shell on SiO2 microparticle for quantifiable single particle SERS

Download (3.7 MB)
journal contribution
posted on 2023-01-10, 12:31 authored by Daragh Rice, RABAH MOURASRABAH MOURAS, Matthew Gleeson, Ning LiuNing Liu, Syed Ansar TofailSyed Ansar Tofail, Tewfik SoulimaneTewfik Soulimane, Christophe SilienChristophe Silien
Noble-metal nanoparticles size and packing density are critical for sensitive surface-enhanced Raman scattering (SERS) and controlled preparation of such films required to achieve reproducibility. Provided that they are made reliable, Ag shell on SiO2 microscopic particles (Ag/SiO2) are promising candidates for lab-on-a-bead analytical measurements of low analyte concentration in liquid specimen. Here, we selected nanoporous silica microparticles as a substrate for reduction of AgNO3 with 3-aminopropyltriethoxysilane (APTES). In a single preparation step, homogeneous and continuous films of Ag nanoparticles are formed on SiO2 surfaces with equimolar concentration of APTES and silver nitrate in ethanol. It is discussed that amine and silane moieties in APTES contribute first to an efficient reduction on the silica and second to capping the Ag nanoparticles. The high density and homogeneity of nanoparticle nucleation is further regulated by the nanoporosity of the silica. The Ag/SiO2 microparticles were tested for SERS using self-assembled 4-aminothiophenol monolayers, and an enhancement factor of ca. 2 × 106 is measured. Importantly, the SERS relative standard deviation is 36% when a single microparticle is considered and drops to 11% when sets of 10 microparticles are considered. As prepared, the microparticles are highly suitable for state-of-the-art quantitative lab-on-a-bead interrogation of specimens.

History

Publication

ACS Omega;3, pp. 13028-13035

Publisher

American Chemical Society

Note

peer-reviewed

Other Funding information

SFI

Language

English

Also affiliated with

  • Bernal Institute

Department or School

  • Physics

Usage metrics

    University of Limerick

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC