A federated learning approach to network intrusion detection using residual networks in industrial IoT networks
This paper introduces a sophisticated approach to network security, with a primary emphasis on utilizing deep learning for intrusion detection. In real-world scenarios, the high dimensionality of training data poses challenges for simple deep learning models and can lead to vanishing gradient issues with complex neural networks. Additionally, uploading network trafc data to a central server for training raises privacy concerns. To tackle these issues, the paper introduces a Residual Network (ResNet)-based deep learning model trained using a federated learning approach. The ResNet efectively tackles the vanishing gradient problem, while federated learning enables multiple Internet Service Providers (ISPs) or clients to engage in joint training without sharing their data with third parties. This approach enhances accuracy through collaborative learning while maintaining privacy. Experimental results on the X-IIoTID dataset indicate that the proposed model outperforms conventional deep learning and machine learning methods in terms of accuracy and other metrics used for evaluation. Specifcally, the proposed methodology achieved 99.43% accuracy.
History
Publication
The Journal of Supercomputing, 2024, 80, pp. 18325–18346Publisher
SpringerOther Funding information
Open Access funding provided by the IReL ConsortiumSustainable development goals
- (9) Industry, Innovation and Infrastructure
External identifier
Department or School
- Electronic & Computer Engineering