Deep-UV absorption spectrometry for detection of toxic airborne gases, for instance, Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX) has drawn considerable attention owing to its high sensitivity and reliability. However, the development of a deep-UV absorbance detector having good sensitivity, portability, and a low-volume gas cell with applicability for a micro Gas Chromatography (µGC) is challenging. Herein we present a novel, self-referenced, and portable deep-UV absorbance detector with a microliter (275 µL) gas cell having minimal dead volume. It has excellent compatibility with µGC for detection of individual BTEX components in a mixed sample at a sub-ppm level. The design consists of the latest, portable, and cost-effective optical and electronic components, i.e., deep-UV LED, hollow-core waveguide, and photodiodes. The detector directly measures the absorbance values in volts using an integrated circuit with a log-ratio amplifier. The prototype was tested with direct injection of toluene-N2 (1.5 ppm to 50 ppm) and good linearity (R2 = 0.99) with a limit of detection of 196 ppb was obtained. The absorbance detector with µGC setup was tested with a BTEX mixture in N2 at different GC column temperatures. All the BTEX species were sequentially separated and detected with an individual peak for a concentration range of 2.5 ppm to 10 ppm.
Funding
Study on Aerodynamic Characteristics Control of Slender Body Using Active Flow Control Technique