University of Limerick
Browse

Advances in leaf plant bioactive compounds: modulation of chronic inflammation related to obesity

Download (1.55 MB)
journal contribution
posted on 2025-04-22, 10:42 authored by Jorge Barros, Ana Abraão, Irene Gouvinhas, Daniel GranatoDaniel Granato, Ana Novo Barros

Over the years, there has been a tendency for an increase in global obesity. The World Health Organization’s (WHO) 2024 report states that in 2019, more than one billion people were obese, and this condition was responsible for five million deaths, being that obesity is more prevalent among adults compared to adolescents and children. Obesity is a chronic disease characterized by alterations in adipose tissue. When excessive food is consumed and energy expenditure is low, adipose tissue undergoes hypertrophy and hyperplasia. This process activates B cells and induces the transition of anti-inflammatory M2-like macrophages into pro-inflammatory M1-like macrophages. B cells, acting as inflammatory mediators, stimulate pro-inflammatory CD8+ T cells, and promote macrophage infiltration into tissues. This condition triggers inflammation, increases oxidative stress, and ultimately leads to cellular death. During inflammation, an increase of pro-inflammatory cytokines occurs along with a decrease of anti-inflammatory cytokines. By contrast, the increase of oxidative stress is related to an increase of reactive oxygen species (ROS), oxidation of biomolecules, and a decrease in antioxidants. This mechanism for obesity can be mitigated through several healthy lifestyle changes, primarily including regular physical activity and healthy eating. These factors help reduce pro-inflammatory mediators and ROS, lowering inflammation and oxidative stress. There-fore, this review article focuses on studying the bioactive compounds present in the edible leaves of Annona cherimola Mill., Ipomoea batata (L.) Poir., Colocasia esculenta (L.) Schott, Eriobotrya japonica, Cymbopogon citratus, Psidium guajava (L.), and Smallanthus sonchifolius to evaluate their effects on the mechanisms involved in obesity.

History

Publication

International Journal of Molecular Sciences 26(7), 3358

Publisher

MDPI

Other Funding information

National Funds by FCT—Portuguese Foundation for Science and Technology, under the project UID/04033: Centro de Investigação e de Tecnologias Agro-Ambienteis e Biológicas and LA/P/0126/2020 (https://doi.org/10.54499/LA/P/0126/2020).

Department or School

  • Biological Sciences
  • School of Engineering

Usage metrics

    University of Limerick

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC