Fault-tolerant control system for marine robots, developed by researchers at Centre for Robotics & Intelligent Systems (CRIS), University of Limerick, utilises the hybrid method for control allocation, based on the integration of the pseudoinverse and the fixed-point iteration method. The algorithm is implemented as a two-step process. In the first step, the pseudoinverse solution is found, and the feasibility of the solution is examined analysing its components. If violation of actuator constraint(s) is detected, the fixed-point iteration method is activated in the second step. In this way, the hybrid method for control allocation can allocate the exact solution, optimal in the l2 sense, inside the entire attainable command set. This solution minimises a control energy cost function, the most suitable criteria for underwater applications. The performance of the thruster fault-tolerant control system has been validated during the research cruise CE19001, where the work-class ROV Étaín, deployed from support vessel Celtic Explorer via Tether Management System (TMS), successfully performed several complex subsea tasks with a faulty horizontal thruster. This paper describes the algorithm, provides geometric interpretation and presents the results from field trials.
Funding
Vibrational Energy Transfer and Shock Waves in Molecular Materials
This is the author’s version of a work that was accepted for publication in IFAC-PapersOnline. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in IFAC-PapersOnLine, 2019, 52 (21), pp. 277-282, http://dx.doi.org/10.1016/j.ifacol.2019.12.320