University of Limerick
Browse
OSullivan_2018_Assessment.pdf (483.62 kB)

Assessment of an active industrial exoskeleton to aid dynamic lifting and lowering manual handling tasks

Download (483.62 kB)
journal contribution
posted on 2018-04-20, 14:45 authored by Kirsten Huysamen, Michiel P. de Looze, Tim Bosch, Jesús Ortiz, Stefano Toxiri, Leonard O'SullivanLeonard O'Sullivan
The aim of this study was to evaluate the effect of an industrial exoskeleton on muscle activity, perceived musculoskeletal effort, measured and perceived contact pressure at the trunk, thighs and shoulders, and subjective usability for simple sagittal plane lifting and lowering conditions. Twelve male participants lifted and lowered a box of 7.5 kg and 15 kg, respectively, from mid-shin height to waist height, five times, both with and without the exoskeleton. The device significantly reduced muscle activity of the Erector Spinae (12%-15%) and Biceps Femoris (5%). Ratings of perceived musculoskeletal effort in the trunk region were significantly less with the device (9.5%-11.4%). The measured contact pressure was highest on the trunk (91.7 kPa-93.8 kPa) and least on shoulders (47.6 kPa-51.7 kPa), whereas pressure was perceived highest on the thighs (35-44% of Max LPP). Six of the users rated the device usability as acceptable. The exoskeleton reduced musculoskeletal loading on the lower back and assisted with hip extensor torque during lifting and lowering. Contact pressures fell below the Pain Pressure Threshold. Perceived pressure was not exceptionally high, but sufficiently high to cause discomfort if used for long durations.

Funding

Study on Aerodynamic Characteristics Control of Slender Body Using Active Flow Control Technique

Japan Society for the Promotion of Science

Find out more...

History

Publication

Applied Ergonomics;68, pp. 125-131

Publisher

Elsevier

Note

peer-reviewed

Other Funding information

ERC

Rights

This is the author’s version of a work that was accepted for publication in Applied Ergonomics. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Applied Ergonomics, 2018, 68, pp. 125-131,https://doi.org/10.1016/j.apergo.2017.11.004

Language

English

Usage metrics

    University of Limerick

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC