University of Limerick
Browse
- No file added yet -

Biphasic composite of calcium phosphate-based mesoporous silica as a novel bone drug delivery system

Download (10.3 MB)
journal contribution
posted on 2022-12-02, 15:44 authored by Magdalena Prokopowicz, Adrian Szewczyk, Adrianna Skwira, Rafał Sądej, Gavin WalkerGavin Walker
We reported the new biphasic composites of calcium phosphate and mesoporous silica material (CaP@MSi) in the form of powders and pellets as a potential bone drug delivery system for doxycycline hydrochloride (DOX). The CaP@MSi powders were synthesized by cationic surfactant-templating method. The effects of 10, 20, and 30% CaP content in the CaP@MSi powders on the molecular surface structure, the cytotoxicity against osteoblast cells in vitro, and the mineralization potential in simulated body fluid were investigated. The CaP@MSi characterized by the highest mineralization potential (30% CaP content) were used for DOX adsorption and pelletization process. The CaP which precipitated in the CaP@MSi composites was characterized as calcium-deficient with the Ca:P molar ratio between 1.0 and 1.2. The cytotoxicity assays demonstrated that the CaP content in MSi increases osteoblasts viability indicating the CaP@MSi (30% CaP content) as the most biocompatible. The combination of CaP and MSi was an effective strategy to improve the mineralization potential of parent material. Upon immersion in simulated body fluid, the CaP of composite converted into the bone-like apatite. The obtained pellets preserved the mineralization potential of CaP@MSi and provided the prolonged 5-day DOX release. The obtained biphasic CaP@MSi composites seem to have an application potential as bone-specific drug delivery system.

History

Publication

Drug Delivery and Translational Research;

Publisher

Springer Verlag

Note

peer-reviewed

Language

English

Also affiliated with

  • Bernal Institute

Department or School

  • Chemical Sciences

Usage metrics

    University of Limerick

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC