University of Limerick
Browse

CafeNet: A novel multi-scale context aggregation and multi-level foreground enhancement network for polyp segmentation

Download (8.37 MB)
journal contribution
posted on 2024-10-21, 14:21 authored by Zhanlin Ji, Xiaoyu Li, Zhiwu Wang, Haiyang Zhang, Na Yuan, Xueji Zhang, Ivan GanchevIvan Ganchev

The detection of polyps plays a significant role in colonoscopy examinations, cancer diagnosis, and early patient treatment. However, due to the diversity in the size, color, and shape of polyps, as well as the presence of low image contrast with the surrounding mucosa and fuzzy boundaries, precise polyp segmentation remains a challenging task. Furthermore, this task requires excellent real-time performance to promptly and efficiently present predictive results to doctors during colonoscopy examinations. To address these challenges, a novel neural network, called CafeNet, is proposed in this paper for rapid and accurate polyp segmentation. CafeNet utilizes newly designed multi-scale context aggregation (MCA) modules to adapt to the extensive variations in polyp morphology, covering small to large polyps by fusing simplified global contextual information and local information at different scales. Additionally, the proposed network utilizes newly designed multi-level foreground enhancement (MFE) modules to compute and extract differential features between adjacent layers and uses the prediction output from the adjacent lower-layer decoder as a guidance map to enhance the polyp information extracted by the upper-layer encoder, thereby improving the contrast between polyps and the background. The polyp segmentation performance of the proposed CafeNet network is evaluated on five benchmark public datasets using six evaluation metrics. Experimental results indicate that CafeNet outperforms the state-of-the-art networks, while also exhibiting the least parameter count along with excellent real-time operational speed.

History

Publication

International Journal of Imaging Systems and Technology, 2024, 34, e23183

Publisher

Wiley and Sons Ltd

Other Funding information

Open access funding provided by IReL

Sustainable development goals

  • (3) Good Health and Well-being

Department or School

  • Electronic & Computer Engineering

Usage metrics

    University of Limerick

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC