University of Limerick
Grimes_2023_Carbon.pdf (8.56 MB)

Carbon dioxide and acetone mixtures as refrigerants for industry heat pumps to supply temperature in the range 150–220 o C

Download (8.56 MB)
journal contribution
posted on 2023-08-03, 09:45 authored by J. Gomez-Herhnández, RONAN GRIMESRONAN GRIMES, J.V. Briongos, C Mangrán-Cruz, D. Santana

Industry decarbonization is a key a challenge towards the transition to climate neutrality. Indeed, there is a need to satisfy heat at temperatures higher than 150 ◦C in relevant industrial sectors by upgrading lower temperature heat flows, such as heat from renewable heat sources, ambient heat or industrial waste heat. High temperature heat pumps (HTHP) can upgrade such heat flows enabling great savings in carbon emissions. New refrigerants are needed to develop HTHPs achieving high performances at high temperatures. This paper proposes the use of a new zeotropic mixture composed of carbon dioxide and acetone as the refrigerant of HTHPs working in the temperature range of 150–220 ◦C. The new fluid is compared with existing pure refrigerants currently used. The thermodynamic characterization of the CO2/acetone mixtures shows temperature glides below 50 K for CO2 mass fractions up to 10%. The best HTHP performance is shown for the mixture 5% CO2/95% acetone in mass fraction. For instance, such a mixture obtains a COP of 5.63 when the target outlet sink temperature is 200 ◦C and the temperature difference between the outlet heat sink and the inlet heat source is 70 K, showing an improvement of 46% compared to pure acetone.



Energy 269, 126821



Other Funding information

Madrid Government (Comunidad de Madrid-Spain) under the Multiannual Agreement with UC3M in the line of Excellence of University Professors

Also affiliated with

  • Bernal Institute
  • Stokes Research Institute

Sustainable development goals

  • (7) Affordable and Clean Energy

Department or School

  • School of Engineering