University of Limerick
Browse

Cellular zinc homeostasis contributes to neuronal differentiation in human induced pluripotent stem cells

Download (3.13 MB)
journal contribution
posted on 2017-08-29, 08:48 authored by Stefanie Pfaender, Karl Föhr, Anne-Kathrin Lutz, Stefan Putz, Kevin Achberger, Leonhard Linta, Stefan Liebau, Tobias M. Boeckers, Andreas M. Grabrucker
Disturbances in neuronal differentiation and function are an underlying factor of many brain disorders. Zinc homeostasis and signaling are important mediators for a normal brain development and function, given that zinc deficiency was shown to result in cognitive and emotional deficits in animal models that might be associated with neurodevelopmental disorders. One underlying mechanism of the observed detrimental effects of zinc deficiency on the brain might be impaired proliferation and differentiation of stem cells participating in neurogenesis. Thus, to examine the molecular mechanisms regulating zinc metabolism and signaling in differentiating neurons, using a protocol for motor neuron differentiation, we characterized the expression of zinc homeostasis genes during neurogenesis using human induced pluripotent stem cells (hiPSCs) and evaluated the influence of altered zinc levels on the expression of zinc homeostasis genes, cell survival, cell fate, and neuronal function. Our results show that zinc transporters are highly regulated genes during neuronal differentiation and that low zinc levels are associated with decreased cell survival, altered neuronal differentiation, and, in particular, synaptic function. We conclude that zinc deficiency in a critical time window during brain development might influence brain function by modulating neuronal differentiation.

Funding

Study on Aerodynamic Characteristics Control of Slender Body Using Active Flow Control Technique

Japan Society for the Promotion of Science

Find out more...

Anthropological research on the medical care of life and bioethics of pluralism in modern Indian society

Japan Society for the Promotion of Science

Find out more...

History

Publication

Neural Plasticity;article ID 3760702

Publisher

Hindawi Publishing Corporation

Note

peer-reviewed

Other Funding information

ERC

Language

English

Usage metrics

    University of Limerick

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC