University of Limerick
Browse

Computational modeling of drug separation from aqueous solutions using octanol organic solution in membranes

Download (3.3 MB)
journal contribution
posted on 2020-11-11, 09:31 authored by Mahboubeh Pishnamazi, Ali Taghvaie Nakhjiri, Arezoo Sodagar Taleghani, Mahdi Ghadiri, Azam Marjani, Saeed Shirazian
Continuous membrane separation of pharmaceuticals from an aqueous feed was studied theoretically by development of high-performance mechanistic model. The model was developed based on mass and momentum transfer to predict separation and removal of ibuprofen (IP) and its metabolite compound, i.e. 4-isobutylacetophenone (4-IBAP) from aqueous solution. The modeling study was carried out for a membrane contactor considering mass transport of solute from feed to organic solvent (octanol solution). The solute experiences different mass transfer resistances during the removal in membrane system which were all taken into account in the modeling. The model’s equations were solved using computational fluid dynamic technique, and the simulations were carried out to understand the effect of process parameters, flow pattern, and membrane properties on the removal of both solutes. The simulation results indicated that IP and 4-IBAP can be effectively removed from aqueous feed by adjusting the process parameters and flow pattern. More removal was obtained when the feed flows in the shell side of membrane system due to improving mass transfer. Also, feed flow rate was indicated to be the most affecting process parameter, and the highest solute removal was obtained at the lowest feed flow rate.

History

Publication

Scientific Reports;10,19133

Publisher

Nature Research

Note

peer-reviewed

Other Funding information

Higher Education of Russia, SFI

Language

English

Usage metrics

    University of Limerick

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC