University of Limerick
Browse
- No file added yet -

Density functional theory predictions of the mechanical properties of crystalline materials

Download (3.63 MB)
journal contribution
posted on 2022-12-13, 09:21 authored by Evan Kiely, Reabetswe Zwane, Robert Fox, Anthony M. Reilly, Sarah GuerinSarah Guerin
The mechanical properties of crystalline materials are crucial knowledge for their screening, design, and exploitation. Density functional theory (DFT), remains one of the most effective computational tools for quantitatively predicting and rationalising the mechanical response of these materials. DFT predictions have been shown to quantitatively correlate to a number of experimental techniques, such as nanoindentation, high-pressure X-ray crystallography, impedance spectroscopy, and spectroscopic ellipsometry. Not only can bulk mechanical properties be derived from DFT calculations, this computational methodology allows for a full understanding of the elastic anisotropy in complex crystalline systems. Here we introduce the concepts behind DFT, and highlight a number of case studies and methodologies for predicting the elastic constants of materials that span ice, biomolecular crystals, polymer crystals, and metal–organic frameworks (MOFs). Key parameters that should be considered for theorists are discussed, including exchange– correlation functionals and dispersion corrections. The broad range of software packages and post-analysis tools are also brought to the attention of current and future DFT users. It is envisioned that the accuracy of DFT predictions of elastic constants will continue to improve with advances in high-performance computing power, as well as the incorporation of many-body interactions with quasi-harmonic approximations to overcome the negative effects of calculations carried out at absolute zero.

History

Publication

CrystEngComm;23, pp.5697–5710

Publisher

Royal Society of Chemistry

Note

peer-reviewed

Other Funding information

SFI

Language

English

Also affiliated with

  • Synthesis and Solid State Pharmaceutical Centre
  • Bernal Institute

Department or School

  • Physics

Usage metrics

    University of Limerick

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC