University of Limerick
Browse
2020_The_Analyst_Manuscript_Open_Access.pdf (760.15 kB)

Detection of Pseudomonas aeruginosa quorum sensing molecules at an electrified liquid|liquid micro-interface through facilitated proton transfer

Download (760.15 kB)
journal contribution
posted on 2021-06-04, 10:36 authored by Edward D. Burgoyne, Andrés Molina-Osorio, Reza Moshrefi, Rachel Shanahan, Gerard P. McGlacken, Talia Jane Stockmann, Micheál D. Scanlon
Miniaturization of electrochemical detection methods for point-of-care-devices is ideal for their integration and use within healthcare environments. Simultaneously, the prolific pathogenic bacteria Pseudomonas aeruginosa poses a serious health risk to patients with compromised immune systems. Recognizing these two factors, a proof-of-concept electrochemical method employing a micro-interface between water and oil (w/o) held at the tip of a pulled borosilicate glass capillary is presented. This method targets small molecules produced by P. aeruginosa colonies as signalling factors that control colony growth in a pseudo-multicellular process known as quorum sensing (QS). The QS molecules of interest are 4-hydroxy-2-heptylquinoline (HHQ) and 2-heptyl-3,4-dihydroxyquinoline (PQS, Pseudomonas quinolone signal). Hydrophobic HHQ and PQS molecules, dissolved in the oil phase, were observed electrochemically to facilitate proton transfer across the w/o interface. This interfacial complexation can be exploited as a facile electrochemical detection method for P. aeruginosa and is advantageous as it does not depend on the redox activity of HHQ/PQS. Interestingly, the limit-of-linearity is reached as [H+] ≈ [ligand]. Density functional theory calculations were performed to determine the proton affinities and gas-phase basicities of HHQ/PQS, as well as elucidate the likely site of stepwise protonation within each molecule.

Funding

The perceptions of senior management of a semi-state organization on affirmative action

National Research Foundation

Find out more...

Using the Cloud to Streamline the Development of Mobile Phone Apps

Innovate UK

Find out more...

Study on Aerodynamic Characteristics Control of Slender Body Using Active Flow Control Technique

Japan Society for the Promotion of Science

Find out more...

History

Publication

Analyst;145, pp. 7000-7008

Publisher

Royal Society of Chemistry

Note

peer-reviewed

Other Funding information

SFI, ERC, European Union (EU), IRC

Rights

© 2020 Royal Society of Chemistry. Personal use of this material is permitted. Permission from Royal Society of Chemistry must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

Language

English

Usage metrics

    University of Limerick

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC