University of Limerick
Browse
- No file added yet -

Enhanced sensitivity of heterocore structure surface plasmon resonance sensors based on local microstructures

Download (3.73 MB)
journal contribution
posted on 2020-08-31, 08:40 authored by Wenjie Zhu, Qing Huang, Yong Wang, Elfed Lewis, Minghong Yang
A method to improve the refractive index (RI) and temperature sensitivities of optical fiber based on surface plasmon resonance (SPR) sensors is proposed and experimentally demonstrated. It is realized by using a precision femtosecond laser system to manufacture microstructures on a heterocore optical fiber structure (multimode single-mode multimode fiber, MSM). The microstructured MSM structure fiber-optic sensors were coated with 60-nm gold (Au) film to test and verify RI sensing, obtaining an enhancement of the maximum sensitivity range from 2845.18 to 3313.15 nm/RIU. The fabricated sensors were additionally coated with a layer of polydimethylsiloxane, which has a high negative thermos-optic coefficient, to conduct a series of temperature sensing experiments. Experimental results showed that the maximum sensitivity increased from 1.1998 to 1.5646 nm/degrees C. Compared with nonmicrostructured sensors, the RI and temperature sensitivity of the proposed sensor has increased 16.4% and 30.2%, respectively. The simply fabricated, low-cost, and high-sensitivity SPR sensor has promising applications in many areas, especially in the biochemical field. (C) 2018 society of Photo-optical Instrumentation Engineers (SPIE).

History

Publication

Optical Engineering;57 (7)

Publisher

International Society for Optics and Photonics

Note

peer-reviewed

Other Funding information

National Natural Science Foundation of China

Rights

2018 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited

Language

English

Usage metrics

    University of Limerick

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC