University of Limerick
Browse
- No file added yet -

Existence, stability, and dynamics of ring and near-ring solutions to the saturated Gierer--Meinhardt model in the semistrong regime

Download (1.03 MB)
journal contribution
posted on 2022-12-07, 15:58 authored by Michael J. Ward, Iain R. Moyles
We analyze a singularly perturbed reaction-diffusion system in the semi-strong diffusion regime in two spatial dimensions where an activator species is localized to a closed curve, while the inhibitor species exhibits long range behavior over the domain. In the limit of small activator diffusivity we derive a new moving boundary problem characterizing the slow time evolution of the curve, which is defined in terms of a quasi steady-state inhibitor diffusion field and its properties on the curve. Numerical results from this curve evolution problem are illustrated for the Gierer-Meinhardt model (GMS) with saturation in the activator kinetics. A detailed analysis of the existence, stability, and dynamics of ring and near-ring solutions for the GMS model is given, whereby the activator concentrates on a thin ring concentric within a circular domain. A key new result for this ring geometry is that by including activator saturation there is a qualitative change in the phase portrait of ring equilibria, in that there is an S-shaped bifurcation diagram for ring equilibria, which allows for hysteresis behavior. In contrast, without saturation, it is well-known that there is a saddle-node bifurcation for the ring equilibria. For a near-circular ring, we develop an asymptotic expansion up to quadratic order to fully characterize the normal velocity perturbations from our curve-evolution problem. In addition, we also analyze the linear stability of the ring solution to both breakup instabilities, leading to the disintegration of a ring into localized spots, and zig-zag instabilities, leading to the slow shape deformation of the ring. We show from a nonlocal eigenvalue problem that activator saturation can stabilize breakup patterns that otherwise would be unstable. Through a detailed matched asymptotic analysis, we derive a new explicit formula for the small eigenvalues associated with zig-zag instabilities, and we show that they are equivalent to the velocity perturbations induced by the near-circular ring geometry. Finally, we present full numerical simulations from the GMS PDE system that confirm the predictions of the analysis.

History

Publication

Siam Journal on Applied Dynamical Systems;16 (1), pp. 597-639

Publisher

Society for Industrial and Applied Mathematics

Note

peer-reviewed

Other Funding information

SFI

Language

English

Also affiliated with

  • MACSI - Mathematics Application Consortium for Science & Industry

Department or School

  • Mathematics & Statistics

Usage metrics

    University of Limerick

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC