University of Limerick
Browse
- No file added yet -

Highly efficient oxygen evolution reaction enabled by phosphorus doping of the Fe electronic structure in iron–nickel selenide nanosheets

Download (2.34 MB)
journal contribution
posted on 2021-08-06, 13:00 authored by Yuan Huang, Li-Wen Jiang, Bu-Yan Shi, Kevin M. RyanKevin M. Ryan, Jian-Jun Wang
The electronic structure of active sites is critically important for electrochemical reactions. Here, the authors report a facile approach to independently regulate the electronic structure of Fe in Ni0.75Fe0.25Se2 by P doping. The resulting electrode exhibits superior catalytic performance for the oxygen evolution reaction (OER) showing a low overpotential (238 mV at 100 mA cm−2, 185 mV at 10 mA cm−2) and an impressive durability in an alkaline medium. Additionally, the mass activity of 328.19 A g−1 and turnover frequency (TOF) of 0.18 s−1 at an overpotential of 500 mV are obtained for P─Ni0.75Fe0.25Se2 which is much higher than that of Ni0.75Fe0.25Se2 and RuO2. This work presents a new strategy for the rational design of efficient electrocatalysts for OER.

Funding

Using the Cloud to Streamline the Development of Mobile Phone Apps

Innovate UK

Find out more...

Morpho-genetic prerequisites for sexual dimorphism of the brain and human endowments

Russian Foundation for Basic Research

Find out more...

Development of theoretical and experimental criteria for predicting the wear resistance of austenitic steels and nanostructured coatings based on a hard alloy under conditions of erosion-corrosion wear

Russian Foundation for Basic Research

Find out more...

History

Publication

Advanced Science;2101775

Publisher

Wiley and Sons Ltd

Note

peer-reviewed

Other Funding information

National Natural Science Foundation of China, Shandong Provincial Natural Science Foundation, SFI, IRC

Language

English

Usage metrics

    University of Limerick

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC