Identification of monoclonal antibody drug substances using non-destructive Raman spectroscopy
Monoclonal antibodies provide highly specific and effective therapies for the treatment of chronic diseases. These protein-based therapeutics, or drug substances, are transported in single used plastic packaging to fill finish sites. According to good manufacturing practice guidelines, each drug substance needs to be identified before manufacturing of the drug product. However, considering their complex structure, it is challenging to correctly identify therapeutic proteins in an efficient manner. Common analytical techniques for therapeutic protein identification are SDS-gel electrophoresis, enzyme linked immunosorbent assays, high performance liquid chromatography and mass spectrometry-based assays. Although effective in correctly identifying the protein therapeutic, most of these techniques need extensive sample preparation and removal of samples from their containers. This step not only risks contamination but the sample taken for the identification is destroyed and cannot be re-used. Moreover, these techniques are often time consuming, sometimes taking several days to process. Here, we address these challenges by developing a rapid and non-destructive identification technique for monoclonal antibody-based drug substances. Raman spectroscopy in combination with chemometrics were used to identify three monoclonal antibody drug substances. This study explored the impact of laser exposure, time out of refrigerator and multiple freeze thaw cycles on the stability of monoclonal antibodies. and demonstrated the potential of using Raman spectroscopy for the identification of protein-based drug substances in the biopharmaceutical industry.
Funding
History
Publication
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 299, 122872Publisher
ElsevierAlso affiliated with
- Bernal Institute
- Synthesis and Solid State Pharmaceutical Centre
Sustainable development goals
- (3) Good Health and Well-being
- (11) Sustainable Cities and Communities
External identifier
Department or School
- Mathematics & Statistics
- Chemical Sciences