In situ observation of chemically induced protein denaturation at solvated interfaces
Proteins unfold in chaotropic salt solutions, a process that is difficult to observe at the single protein level. The work presented here demonstrates that a liquid-based atomic force microscope and graphene liquid-cell-based scanning transmission electron microscope make it possible to observe chemically induced protein unfolding. To illustrate this capability, ferritin proteins were deposited on a graphene surface, and the concentration-dependent urea- or guanidinium-induced changes of morphology were monitored for holo-ferritin with its ferrihydrite core as well as apo-ferritin without this core. Depending on the chaotropic agent the liquid-based imaging setup captured an unexpected transformation of natively folded holo-ferritin proteins into rings after urea treatment but not after guanidinium treatment. Urea treatment of apo-ferritin did not result in nanorings, confirming that nanorings are a specific signature of denaturation of holo-ferritins after exposture to sufficiently high urea concentrations. Mapping the in situ images with molecular dynamics simulations of ferritin subunits in urea solutions suggests that electrostatic destabilization triggers denaturation of ferritin as urea makes direct contact with the protein and also disrupts the water H-bonding network in the ferritin solvation shell. Our findings deepen the understanding of protein denaturation studied using label-free techniques operating at the solid–liquid interface.
Funding
Characterizing unlabeled protein complexes on a single particle basis in solution
Swiss National Science Foundation
Find out more...History
Publication
ACS Applied Materials & Interfaces, 2023,Publisher
American Chemical SocietyOther Funding information
P.N.N. and M.M. thank the Adolphe Merkle Foundation for their support. P.N.N. thanks the SNF for a Spark Grant (Grant CRSK-2_190330) and Olivia Eggenberger for support with preparing urea stock solutions at the Adolphe Merkle Institute. D.T. acknowledges support from Science Foundation Ireland (SFI) under Award 12/RC/2275_P2 (SSPC) and for super-computing resources at the SFI/Higher Education Authority Irish Center for High-End Computing (ICHEC). M.M. acknowledges the SNF Grant 200020-197239 for fundingAlso affiliated with
- Bernal Institute
Sustainable development goals
- (4) Quality Education
External identifier
Department or School
- Physics