University of Limerick
Browse

In situ observation of chemically induced protein denaturation at solvated interfaces

Download (2.91 MB)
journal contribution
posted on 2023-10-12, 10:04 authored by Peter Niraj Nirmalraj, Marta D. Rossell, Walid Dachraoui, Damien ThompsonDamien Thompson, Michael Mayer

Proteins unfold in chaotropic salt solutions, a process that is difficult to observe at the single protein level. The work presented here demonstrates that a liquid-based atomic force microscope and graphene liquid-cell-based scanning transmission electron microscope make it possible to observe chemically induced protein unfolding. To illustrate this capability, ferritin proteins were deposited on a graphene surface, and the concentration-dependent urea- or guanidinium-induced changes of morphology were monitored for holo-ferritin with its ferrihydrite core as well as apo-ferritin without this core. Depending on the chaotropic agent the liquid-based imaging setup captured an unexpected transformation of natively folded holo-ferritin proteins into rings after urea treatment but not after guanidinium treatment. Urea treatment of apo-ferritin did not result in nanorings, confirming that nanorings are a specific signature of denaturation of holo-ferritins after exposture to sufficiently high urea concentrations. Mapping the in situ images with molecular dynamics simulations of ferritin subunits in urea solutions suggests that electrostatic destabilization triggers denaturation of ferritin as urea makes direct contact with the protein and also disrupts the water H-bonding network in the ferritin solvation shell. Our findings deepen the understanding of protein denaturation studied using label-free techniques operating at the solid–liquid interface.

Funding

SSPC_Phase 2

Science Foundation Ireland

Find out more...

Characterizing unlabeled protein complexes on a single particle basis in solution

Swiss National Science Foundation

Find out more...

History

Publication

ACS Applied Materials & Interfaces, 2023,

Publisher

American Chemical Society

Other Funding information

P.N.N. and M.M. thank the Adolphe Merkle Foundation for their support. P.N.N. thanks the SNF for a Spark Grant (Grant CRSK-2_190330) and Olivia Eggenberger for support with preparing urea stock solutions at the Adolphe Merkle Institute. D.T. acknowledges support from Science Foundation Ireland (SFI) under Award 12/RC/2275_P2 (SSPC) and for super-computing resources at the SFI/Higher Education Authority Irish Center for High-End Computing (ICHEC). M.M. acknowledges the SNF Grant 200020-197239 for funding

Also affiliated with

  • Bernal Institute

Sustainable development goals

  • (4) Quality Education

Department or School

  • Physics

Usage metrics

    University of Limerick

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC