University of Limerick
Browse
2014_CGD_-_mHBA_shear_-_postprint.pdf (2.22 MB)

Influence of agitation and fluid shear on nucleation of m-hydroxybenzoic acid polymorphs

Download (2.22 MB)
journal contribution
posted on 2016-10-25, 15:26 authored by Jin Liu, Michael Svärd, Åke C. Rasmuson
The influence of agitation and fluid shear on nucleation of m-hydroxybenzoic acid polymorphs from 1-propanol solution has been investigated through 1160 cooling crystallization experiments. The induction time has been measured at different supersaturations and temperatures in two different crystallizer setups: small vials agitated by magnetic stir bars, for which experiments were repeated 4080 times, and a rotating cylinder apparatus, for which each experiment was repeated five times. The nucleating polymorph has in each case been identified by FTIR spectroscopy. At high thermodynamic driving force for nucleation, only the metastable polymorph (form II) was obtained, while at low driving force both polymorphs were obtained. At equal driving force, a higher temperature resulted in a larger proportion of form I nucleations. The fluid dynamic conditions influence the induction time, as well as the polymorphic outcome. Experiments in small vials show that the agitation rate has a stronger influence on the induction time of form II compared to form I. The fraction of form I nucleations is significantly lower at intermediate agitation rates, coinciding with a reduced induction time of form II. In experiments in the rotating cylinder apparatus, the induction time is found to be inversely correlated to the shear rate. The difference in polymorphic outcome at different driving force is examined in terms of the ratio of the nucleation rates of the two polymorphs, calculated by classical nucleation theory using determined values of the pre-exponential factor and interfacial energy for each polymorph. A possible mechanism explaining the difference in the influence of fluid dynamics on the nucleation of the two polymorphs is based on differences between the two crystal structures. It is hypothesized that the layered structure of form II is comparatively more sensitive to changes in shear flow conditions than the more isotropic form I structure.

Funding

PHILIP KAARET / UNIVERSITY OF IOWA FOSSIL JETS FROM BLACK HOLE TRANSIENTS RECENT XMM-NEWTON OBSERVATIONS HAVE LED TO THE DISCOVERY OF A LARGE SCALE X-RAY JET FROM THE LONG-TERM X-RAY TRANSIENT AND BLACK HOLE CANDIDATE 4U 175533. WE OBTAINED A FOLLOW-UP OB

National Aeronautics and Space Administration

Find out more...

History

Publication

Crystal Growth and Design;14, (11), pp. 5521-5531

Publisher

American Chemical Society

Note

peer-reviewed

Other Funding information

SFI, Swedish Research Council

Rights

© 2014 ACS This document is the Accepted Manuscript version of a Published Work that appeared in final form in Crystal Growth and Design, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/cg500698v

Language

English

Usage metrics

    University of Limerick

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC