posted on 2017-04-13, 10:35authored byAlice B. Nongonierma, Catherine Mooney, Denis C Shields, Richard J. Fitzgerald
Xanthine oxidase (XO) and dipeptidyl peptidase IV (DPP-IV) inhibition by amino acids and dipeptides was studied. Trp and Trp-containing dipeptides (Arg-Trp, Trp-Val, Val-Trp, Lys-Trp and Ile-Trp) inhibited XO. Three amino acids (Met, Leu and Trp) and eight dipeptides (Phe-Leu, Trp-Val, His-Leu, Glu-Lys, Ala-Leu, Val-Ala, Ser-Leu and Gly-Leu) inhibited DPP-IV. Trp and Trp-Val were multifunctional inhibitors of XO and DPP-IV. Lineweaver and Burk analysis showed that Trp was a non-competitive inhibitor of XO and a competitive inhibitor of DPP-IV. Molecular docking with Autodock Vina was used to better understand the interaction of the peptides with the active site of the enzyme. Because of the non-competitive inhibition observed, docking of Trp-Val to the secondary binding sites of XO and DPP-IV is required. Trp-Val was predicted to be intestinally neutral (between 25% and 75% peptide remaining after 60 min simulated intestinal digestion). These results are of significance for the reduction of reactive oxygen species (ROS) and the increase of the half-life of incretins by food-derived peptides. (C) 2013 Elsevier Ltd. All rights reserved.
Funding
THE INFLUENCE OF HOUSEHOLD FACTORS ON THE USE OF TAX AND RETIREMENT PLANNING STRATEGIES
This is the author’s version of a work that was accepted for publication in Food Chemistry. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Food Chemistry, 141 (1), pp. 644-653,http://dx.doi.org/10.1016/j.foodchem.2013.02.115