University of Limerick
Browse

Initial evaluation of the performance of novel inorganic scintillating detectors for small animal irradiation dosimetry

Download (1.01 MB)
journal contribution
posted on 2020-03-25, 12:15 authored by Kevin Byrne, Majed Alharb, Nolan Esplen, Peter Woulfe, Sinéad O'Keeffe, Magdalena Bazalova-Carter, Mark Foley
The purpose of this study was to design and evaluate the performance of four novel inorganic scintillating detectors (ISDs) on the Small Animal Radiation Research Platform (SARRP). Relative scintillator output, measurement repeatability, setup uncertainty, linearity with dose rate, and signal reproducibility over time were investigated. The Gd2O2S:Tb detector had the highest relative signal output, generating up to 219 times more charge than a previously characterized BCF-60based plastic scintillating detector (PSD). The Gd2O2S:Tb detector was then used to measure 220 kVp therapy beam profiles of 10 x 10 and 5 x 5 mm2 fields. Beam profiles using the ZnS-based phosphor were also obtained and compared to investigate the performance of a lower density inorganic scintillator. 10 x 10 and 5 x 5 mm2 therapy beam profile measurements made with the Gd2O2S:Tb and BCF-60 detectors differed, on average, by 1.1% and 1.9%, respectively. The ZnS:Ag measurements differed, on average, by 2.5% and 6% relative to BCF-60 measurements of the 10 x 10 and 5 x 5 mm2 beam profiles, respectively. MicroCT imaging of the detector volumes was also performed, revealing poor packing of the ZnS:Ag crystalline phosphor in the deepest region of the cylindrical cavity. The Gd2O2S:Tb detector, in particular, has proven to be a promising candidate for real-time dosimetry of small fields in small animal irradiators, primarily because of the very large signal intensities observed, along with good repeatability, dose rate linearity, reproducibility and agreement with beam profile measurements made with a previously validated detector.

History

Publication

IEEE Sensors Journal; 20 (9)

Publisher

IEEE Computer Society

Note

peer-reviewed

Other Funding information

Irish Association of Physicists in Medicine

Rights

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.”

Language

English

Usage metrics

    University of Limerick

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC