University of Limerick
Browse

Knowledge graph embedding using a multi-channel interactive convolutional neural network with triple attention

Download (1.39 MB)
journal contribution
posted on 2024-10-09, 08:10 authored by Lin Shi, Weitao Liu, Yafeng Wu, Chenxu Dai, Zhanlin Ji, Ivan GanchevIvan Ganchev

Knowledge graph embedding (KGE) has been identified as an effective method for link prediction, which involves predicting missing relations or entities based on existing entities or relations. KGE is an important method for implementing knowledge representation and, as such, has been widely used in driving intelligent applications w.r.t. question-answering systems, recommendation systems, and relationship extraction. Models based on convolutional neural networks (CNNs) have achieved good results in link prediction. However, as the coverage areas of knowledge graphs expand, the increasing volume of information significantly limits the performance of these models. This article introduces a triple-attention-based multi-channel CNN model, named ConvAMC, for the KGE task. In the embedding representation module, entities and relations are embedded into a complex space and the embeddings are performed in an alternating pattern. This approach helps in capturing richer semantic information and enhances the expressive power of the model. In the encoding module, a multi-channel approach is employed to extract more comprehensive interaction features. A triple attention mechanism and max pooling layers are used to ensure that interactions between spatial dimensions and output tensors are captured during the subsequent tensor concatenation and reshaping process, which allows preserving local and detailed information. Finally, feature vectors are transformed into prediction targets for embedding through the Hadamard product of feature mapping and reshaping matrices. Extensive experiments were conducted to evaluate the performance of ConvAMC on three benchmark datasets compared with state-of-the-art (SOTA) models, demonstrating that the proposed model outperforms all compared models across all evaluation metrics on two of the datasets, and achieves advanced link prediction results on most evaluation metrics on the third dataset.

History

Publication

Mathematics 12(18), 2821

Publisher

MDPI

Other Funding information

National Key Research and Development Program of China under grant no. 2017YFE0135700, and the European Union-NextGenerationEU, through the National Recovery and Resilience Plan of the Republic of Bulgaria (project DUECOS BG-RRP-2.004-0001-C01).

Department or School

  • Electronic & Computer Engineering

Usage metrics

    University of Limerick

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC