Mapping the deformability of natural and designed cellulosomes in solution
Background : Natural cellulosome multi-enzyme complexes, their components, and engineered ‘designer cellu‑losomes’ (DCs) promise an efcient means of breaking down cellulosic substrates into valuable biofuel roducts. Their broad uptake in biotechnology relies on boosting proximity-based synergy among the resident enzymes, but the modular architecture challenges structure determination and rational design.
Results: We used small angle X-ray scattering combined with molecular modeling to study the solution structure of cellulosomal components. These include three dockerin-bearing cellulases with distinct substrate specifcities, original scafoldins from the human gut bacterium Ruminococcus champanellensis (ScaA, ScaH and ScaK) and a trivalent cohesin-bearing designer scafoldin (Scaf20L), followed by cellulosomal complexes comprising these components, and the nonavalent fully loaded Clostridium thermocellum CipA in complex with Cel8A from the same bacterium. The size analysis of Rg and Dmax values deduced from the scattering curves and corresponding molecular models highlight their variable aspects, depending on composition, size and spatial organization of the objects in solution.
Conclusions: Our data quantifes variability of form and compactness of cellulosomal components in solution and confrms that this native plasticity may well be related to speciation with respect to the substrate that is targeted. By showing that scafoldins or components display enhanced compactness compared to the free objects, we provide new routes to rationally enhance their stability and performance in their environment of action.
Funding
Boosting Lignocellulose Biomass Deconstruction with Designer Cellulosomes for Industrial Applications
European Commission
Find out more...History
Publication
Biotechnology for Biofuels and Bioproducts, 2022, 15:68Publisher
BMCOther Funding information
This work was supported by the European Union, Area NMP.2013.1.1-2: Self-assembly of naturally occurring nanosystems: CellulosomePlus Project number: 604530. Additional support to EAB was provided by an Israel Science Foundation Grant (No. 1349), and by an ADEME ERANET IB Grant to MC (No. 1201C0104). The authors strongly acknowledge the regular access to the small angle X-ray scattering beamline SWING at synchrotron SOLEIL (St Aubin, France) through the BAG MX-20170744 and MX-20181002, and are grateful for the expert technical support provided by beamline staf: Javier Perez for help with data treatment and Blandine Pineau for sample preparation. B.R. acknowledges the support received from the PL-Grid Infrastructure and from the National Science Centre, Poland, Grant no 2016/21/B/NZ1/00006Also affiliated with
- Bernal Institute
Sustainable development goals
- (7) Affordable and Clean Energy
External identifier
Department or School
- Physics