University of Limerick
Browse
- No file added yet -

Modelling drug release from polymer-free coronary stents with microporous surfaces

Download (626.97 kB)
journal contribution
posted on 2018-07-16, 12:11 authored by Tuoi T.N. Vo, Sarah Morgan, Christopher McCormick, Sean McGinty, Sean McKee, Martin Meere
Traditional coronary drug-eluting stents (DES) are made from metal and are coated with a permanent polymer film containing an anti-proliferative drug. Subsequent to stent deployment in a diseased coronary artery, the drug releases into the artery wall and helps prevent restenosis by inhibiting the proliferation of smooth muscle cells. Although this technology has proven to be remarkably successful, there are ongoing concerns that the presence of a polymer in the artery can lead to deleterious medical complications, such as late stent thrombosis. Polymer-free DES may help overcome such shortcomings. However, the absence of a rate-controlling polymer layer makes optimisation of the drug release profile a particular challenge. The use of microporous stent surfaces to modulate the drug release rate is an approach that has recently shown particularly promising clinical results. In this study, we develop a mathematical model to describe drug release from such stents. In particular, we develop a mathematical model to describe drug release from microporous surfaces. The model predicts a twostage release profile, with a relatively rapid initial release of most of the drug, followed by a slower release of the remaining drug. In the model, the slow release phase is accounted for by an adsorption/desorption mechanism close to the stent surface. The theoretical predictions are compared with experimental release data obtained in our laboratory, and good agreement is found. The valuable insights provided by our model will serve as a useful guide for designing the enhanced polymer-free stents of the future.

Funding

Earthquake Damageability of Low-Rise Construction

Directorate for Engineering

Find out more...

History

Publication

International Journal of Pharmaceutics;544 pp 392-401

Publisher

Elsevier

Note

peer-reviewed

Other Funding information

The Royal Society, EPSRC, MACSI

Language

English

Usage metrics

    University of Limerick

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC