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Abstract A recent asymptotic model for the operation of a vanadium redox flow bat-
tery (VRFB) is extended to include the dissociation of sulphuric acid - a bulk chem-
ical reaction that occurs in the battery’s porous flow-through electrodes, but which
is often omitted from VRFB models. Using asymptotic methodsand time-dependent
two-dimensional numerical simulations, we show that the charge-discharge curve for
the model with the dissociation reaction is almost identical to that for the model with-
out, even though the concentrations of the ionic species in the recirculating tanks,
although not the state of charge, are considerably different in the two models. The
ability of the asymptotic model to extract both the qualitative and quantitative be-
haviour of the considerably more time-consuming numericalsimulations correctly
indicates that it should be possible to add further physicalphenomena to the model
without incurring significant computational expense.

Keywords Vanadium redox flow battery· Electrochemistry· Asymptotic analysis

1 Introduction

Current demand for increasingly efficient renewable energydelivery has generated
substantial interest in vanadium redox flow batteries (VRFBs) as an energy storage
technology. VRFBs have numerous potential applications: load levelling and peak
shaving, uninterruptible power supplies, emergency backup and facilitation of wind
and photovoltaic energy delivery.
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A VRFB consists of an assembly of cells, typically referred to as a stack; one such
cell is shown in Fig. 1. It is composed of positive and negative flow-through elec-
trodes, typically made of porous carbon felt, that are separated by a proton exchange
membrane that consists of charged molecules: the mobile protons that pass through
it and fixed sites of negative charge. During operation, vanadium-based electrolytes
are pumped through the electrodes; the electrolyte in the positive electrode, vanadyl
sulphate (VOSO4), contains VO+2 and VO2+ ions, whilst that in the negative elec-
trode, vanadium sulphate (V2 (SO4)3), contains V2+ and V3+ ions. In addition, both
electrodes are connected to pumps and storage tanks, meaning that very large elec-
trolyte volumes can be circulated through the cell. During charging, the VO2+ ions
in the positive electrode are reduced to VO+

2 ions, and electrons exit from the posi-
tive terminal of the cell via a current collector that boundsthe electrode on the side
opposite to that of the membrane. Similarly, in the negativeelectrode, electrons enter
via another current collector, reducing the V3+ ions to V2+ ions; during discharge,
the reverse process, also known as oxidation, occurs. Charging and discharging can
be written as

V3++e−
charge
⇋

discharge
V2+ at the negative electrode, (1.1)

VO2++H2O
charge
⇋

discharge
VO+

2 +e−+2H+ at the positive electrode. (1.2)

Typically, each cell in a VRFB operates at a nominal voltage in the interval 1.15-1.55
V and at a temperature of around 30oC.

Mathematical modelling and numerical simulation have recently come to play
an increasingly important role in VRFB research and development. In general, the
models in question consist of a system of partial differential equations that describe
the transient mass, momentum and charge transport that occur in the processes men-
tioned above [1–15], and invariably require numerical solution. However, recent work
by Vynnycky and Assunção [16] demonstrated that a standard and often-used VRFB
model could be reduced asymptotically to give a much simplerset of equations which
had a quasi-analytical solution; moreover, the reduced model was found to require
around 250 times less computational time than the original one. Having said that, the
model considered only the global mechanism described by reactions (1.1) and (1.2),
which makes sense in light of the uncertainty in the kineticsand a lack of characteri-
zation of material parameters. Nevertheless, other phenomena are also believed to be
at play: oxygen and hydrogen evolution via the gas-evolvingside-reactions [4,5,17]

2H2O+2e− ⇋ H2+2OH (hydrogen evolution) ,

2H2O⇋ O2+4e−+4H+ (oxygen evolution) ;

thermal effects [2,10–13]; acid dissociation [9,18,19]; vanadium crossover [9], whereby
V2+ and V3+ ions are transported from the negative electrode across themembrane
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Fig. 1 A schematic of the overall operation of a vanadium redox flow battery

to the positive electrode, and VO+2 and VO2+ ions are transported the other way; and
a further positive-electrode side-reaction [1,17]

VO2++2H2O⇋ HVO3+3H++e−.

Thus, it would be of interest to see if any or all of these, amongst others, can be
incorporated into the asymptotic framework of [16], especially in view of the compu-
tational advantage of doing so. In this light, we focus in this paper on the dissociation
of sulphuric acid(H2SO4), as this is the mechanism that is included in the VRFB
starting model available in the commercially available finite element software Com-
sol Multiphysics [20]. This is normally treated as a two-step reaction in which the
first dissociation step,

H2SO4 → H++HSO−
4 , (1.3)

is assumed to be complete, whereas the second, given by

HSO−
4 → H++SO2−

4 , (1.4)

is not.
The layout of the paper is as follows. In Sect. 2, we formulatea transient two-

dimensional (2D) model for VRFB operation, extending the description in [16] to
include the dissociation of sulphuric acid; in Sect. 3, the governing equations are
nondimensionalized. In Sect. 4, we carry out an asymptotic analysis of the problem,
and present the results in Sect. 5, with conclusions being drawn in Sect. 6.
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Fig. 2 A schematic of a VRFB during charging.I -III represent the components of the cell, whereas1-10
represent internal interfaces or external boundaries.

2 Mathematical model

As in [16], we consider a model geometry consisting of positive and negative porous
flow-through electrodes and a proton exchange membrane, as shown in Fig. 2. As
well as the presence of V2+ and V3+ ions at the negative electrode and VO2+ and
VO+

2 ions at the positive electrode, owing to reactions (1.1) and(1.2), it is natural to
assume the presence of H+,HSO−

4 and SO2−
4 ions in both electrodes, as a result of

the partial dissociation of dilute sulphuric acid. In addition, we assume that: the ge-
ometry is two-dimensional; the cell is isothermal; the membrane is fully humidified;
H+ ions can cross over the membrane, but all other ions cannot; the dilute-solution
approximation is valid; the porosities of each electrode are constant and identical.
The rationale behind these assumptions is given at length in[16], and therefore not
repeated here.
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2.1 Governing equations

2.1.1 Porous carbon electrodes (I,III)

The molar flux,Nk, of ionic speciesk in a porous medium of porosity,ε, can be
expressed via a modified Nernst-Planck equation as

Nk = ckuiney −
zkckDeff

k F

RT
∇φe−Deff

k ∇ck, (2.1)

whereck denotes the concentration of speciesk, uin is the velocity of the electrolyte
at the inlet,ey is the unit vector in they-direction,φe is the electric potential in the
electrolyte,zk is the charge number for speciesk, andDeff

k is the effective diffusion
coefficient for speciesk, which is related to the usual diffusion coefficient,Dk, by the
Bruggeman relation,

Deff
k = ε3/2Dk; (2.2)

in addition, the quantitiesF,R andT are Faraday’s constant, the universal gas con-
stant and the absolute temperature, respectively. The three terms on the right-hand
side of Eq. (2.1) represent ionic transport due to convection, migration and diffusion.
The form used for the convection term already supposes identical plug flows in each
porous electrode [16, 21, 22]. The volume-averaged differential material balance in
the porous carbon electrodes for speciesk is then expressed as

ε
∂ck

∂ t
+∇ ·Nk =−(Sk +Rk), (2.3)

wheret is time,Sk is the electrochemical reaction source term for speciesk andRk is
the source term associated with homogeneous chemical reactions; the explicit forms
for these will be given shortly. Also, assuming that the electrolyte is electroneutral
gives

∑
k

zkck = 0. (2.4)

Also, since the charge entering the electrolyte must be balanced by that which
leaves the solid phase of the electrode, we have

∇ · ie+∇ · is= 0, (2.5)

whereie andis are the ionic and electronic current densities, respectively. Moreover,
ie is given by

ie = ∑
k

zkFNk, (2.6)

whereasis is given by Ohm’s law, i.e.

is =−σeff
s ∇φs, (2.7)

whereφs is the electronic potential andσeff
s is the effective electronic conductivity of

the porous electrode, which is related to the electronic conductivity of solid material,
σs, by a further Bruggeman relation,

σeff
s = (1− ε)3/2σs. (2.8)
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More particularly, (2.5) is rewritten as

∇ · ie = j−, ∇ · is =− j− (2.9)

for the negative electrode, regionI in Fig. 2, and

∇ · ie = j+, ∇ · is =− j+ (2.10)

for the positive electrode (regionIII ), where j− and j+ are transfer current densities
for the electrochemical reactions that occur at the surfaces of the porous electrodes.
As in [1,9], j− and j+ are expressed via the Butler-Volmer relations,

j− = AFk−
(

cs
V2+

)α−,c
(

cs
V3+

)α−,a

{

exp

(

α−,aFη−

RT

)

−exp

(

−
α−,cFη−

RT

)}

,

(2.11)

j+ = AFk+
(

cs
VO2+

)α+,c
(

cs
VO+

2

)α+,a
{

exp

(

α+,aFη+

RT

)

−exp

(

−
α+,cFη+

RT

)}

,

(2.12)

whereA is the specific electroactive area,k− andk+ are reaction rate constants,α±,a

andα±,c are the anodic and cathodic apparent transfer coefficients for reactions (1.1)
and (1.2), respectively, andη+ andη− are the overpotentials, given by

η± = φs−φe−E±, (2.13)

with E− andE+ as, respectively, the equilibrium potentials for reactions (1.1) and
(1.2), which are in turn given by

E− = E0,−−
RT
F

ln((cV2+)
sV2+ (cV3+)

sV3+ ) , (2.14)

E+ = E0,+−
RT
F

ln
(

(

cVO2+

)sVO2+
(

cVO+
2

)s
VO+

2 (cH+)sH+
)

, (2.15)

respectively; in addition,E0,− andE0,+ denote the equilibrium potentials at standard
conditions for reactions (1.1) and (1.2), respectively. InEqs. (2.11) and (2.12), the
quantitiescs

V3+ ,c
s
V2+ ,c

s
VO2+ andcs

VO+
2

represent the concentrations of these species at

the electrode/electrolyte interface; this value usually differs from that within the bulk
of the electrolyte due to the additional resistance to the transport of species from the
interior bulk to the interfaces [1,11], and is given by

cs
i =

ci + εk−e−α−,cFη−/RT (cV2+/γV3+ + cV3+/γV2+)

1+ εk−(e−α−,cFη−/RT/γV2+ + eα−,aFη−/RT/γV3+)
, i = V2+,V3+, (2.16)

cs
i =

ci + εk+e−α+,cFη+/RT (cVO2+/γVO+
2
+ cVO+

2
/γVO2+)

1+ εk+(e−α+,cFη+/RT/γVO+
2
+ eα+,aFη+/RT/γVO2+)

, i = VO+
2 ,VO2+,

(2.17)

whereγk = Dk/d f , with d f as the average distance between the fibres of the carbon
felt. Furthermore, Eqs. (2.11) and (2.12), together with the stoichiometric coefficients
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Source term Positive electrode Negative electrode
SH+ sH+ j+/F 0

SHSO−
4

0 0

SSO2−
4

0 0

SV2+ - sV2+ j−/F
SV3+ - sV3+ j−/F

SVO2+ sVO2+ j+/F -
SVO+

2
sVO+

2
j+/F -

Table 1 Source and sink terms for electrochemical reactions in equation (2.3)

Source term Positive electrode Negative electrode
RH+ −rd −rd

RHSO−
4

rd rd

RSO2−
4

−rd −rd

RV2+ - 0
RV3+ - 0

RVO2+ 0 -
RVO+

2
0 -

Table 2 Source and sink terms for homogeneous chemical reactions inequation (2.3)

Parameter Value Units Reference
cfcs 1990 mol m−3 [23]
E0,+ 1.004 V [24]
E0,− -0.255 V [24]
k+ 2.5×10−8 m s−1 [17]
k− 7×10−8 m s−1 [1]
kd 1×104 mol m−3s−1 [9]

sH+ -2 - -
sV2+ 1 - -
sV3+ -1 - -

sVO2+ 1 - -
sVO+

2
-1 - -

zfcs -1 - -
zH+ 1 - -

zHSO−
4

-1 - -

zSO2−
4

-2 - -

zV2+ 2 - -
zV3+ 3 - -

zVO2+ 2 - -
zVO+

2
1 - -

α±,c 0.45 - [9]
α±,a 0.55 - [9]

β 0.25 - [25]

Table 3 Default values of chemical and electrochemical constants
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Parameter Value Units
c0,−

H+ ,c
0,+
H+ 4447.5∗, 5097.5† mol m−3

c0
HSO−

4
2668.5∗, 3058.5† mol m−3

c0
SO2−

4
2371.5∗, 1981.5† mol m−3

c0
V2+ 156 mol m−3

c0
V3+ 884 mol m−3

c0
VO2+ 884 mol m−3

c0
VO+

2
156 mol m−3

Table 4 Default initial values (∗negative electrode;†positive electrode). All parameter values are taken
from [9].

Parameter Value Units
A 3.5×104 m−1

df 1×10−5 m
hf 4×10−3 m
hm 2.03×10−4 m
L 0.035 m

uin 4.7×10−3 m s−1

V 5.6×10−5 m3

W 2.85×10−2 m
ε 0.93 -

Table 5 Default geometry-related parameters, as in [9].

Parameter Value Units Reference
DH+ 9.31×10−9 m2s−1 [26]

DH+ ,m 3.35×10−9 m2s−1 [9]
DHSO−

4
1.39×10−9 m2s−1 [27]

DSO2−
4

1.07×10−9 m2s−1 [27]

DV2+ 2.4×10−10 m2s−1 [28]
DV3+ 2.4×10−10 m2s−1 [28]

DVO2+ 3.9×10−10 m2s−1 [28]
DVO+

2
3.9×10−10 m2s−1 [28]

F 96485 Cmol−1 -
iapp 400 A m−2 [9]
R 8.314 Jmol−1K−1 -
T 300 K [9]

σm 24.9 S m−1 ∗

σeff
s 66.7 S m−1 [9]

Table 6 Default values for constants related to transport of chargeand mass (∗ based on the values of
DH+,m andcH+ in [9] and [23], respectively)
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in (1.1) and (1.2), are used to constitute the terms forSk in Eq. (2.3), which are given
in Tables 1 and 3.

As for the dissociation of sulphuric acid, this is describedby means of a source
term,rd , given by

rd = kd

(

cH+ − cHSO−
4

cH+ + cHSO−
4

−β

)

, (2.18)

wherekd is a rate parameter andβ the degree of dissociation; typically used values for
these are given in Table 3, and Table 2 shows howrd enters the governing equations.
Note, however, that [9, 18, 19] document this reaction incorrectly in different ways;
in [9], the conservation equation the sulphate ion in their model is not explicitly given,
as this ion is removed via the electroneutrality equations,whereas [18,19] include the
sulphate ion, but do not indicate that they include homogeneous reaction term for this
ion in the conservation equation.

2.1.2 Membrane (III)

First of all, unlike the electrolyte in the porous electrodes, the liquid in the membrane,
which is assumed to consist of water and protons, is not electroneutral. However,
electroneutrality can be assumed to hold when the fixed negative charge sites in the
membrane structure are taken into account; hence,

zH+cH+ + zfcscfcs = 0, (2.19)

wherezfcs is the charge of the fixed sites andcfcs is their concentration, which is here
assumed to be constant.

Current conservation gives
∇ · im = 0, (2.20)

whereim is the ionic current density, and is given by

im = zH+FNH+ , (2.21)

with

NH+ =−
zH+FcH+DH+,m

RT
∇φm, (2.22)

whereDH+ ,m is the proton diffusion coefficient in the membrane; however, since Eq.
(2.19) implies thatcH+ is constant in the membrane, this results in

∇2φm = 0. (2.23)

Note that combining (2.21) and (2.22) gives, in effect, Ohm’s law for the membrane,
and we can therefore identify the electrical conductivity of the membrane,σm, as
being given by

σm = F2cH+DH+,m/RT. (2.24)

Moreover, the above description, which considers proton migration as the only trans-
port process in the membrane, is perhaps one of the simplest available [23], but it
suffices for present purposes.
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2.2 Boundary and interfacial conditions

2.2.1 Current collector/porous felt interface in the negative electrode (1)

At this boundary, which corresponds tox = −(hf + hm/2), the electronic potential
is assigned a zero reference value and all of the ionic species have zero normal flux;
thus,

φs = 0, (2.25)

Nk ·n = 0, k = H+,HSO−
4 ,SO2−

4 ,V2+,V3+. (2.26)

In Eq. (2.26) and below,n denotes the unit outward normal vector at the boundary
under discussion.

2.2.2 Porous felt/membrane interface in the negative electrode (2)

Here, corresponding tox = −hm/2, there is zero electronic current density and zero
normal flux for all of the ionic species, other than H+; these are expressed by

is ·n = 0, (2.27)

Nk ·n = 0, k = HSO−
4 ,SO2−

4 ,V2+,V3+, (2.28)

respectively. A further two conditions are required. Theseare continuity for the ionic
current density, i.e.

im ·n = ie ·n, (2.29)

which is a consequence of Eq. (2.28) and the continuity of proton flux, and

φm = φe−
RT
F

[− lncH+ ]+− , (2.30)

where[ ]+− denotes the difference in the value of a function to the right(+) and
the left (-) ofx = −hm/2; Eq. (2.30) takes into account the Donnan potential which
represents the potential jump at the membrane/electrolyteinterface for a system in
equilibrium [9].

2.2.3 Porous felt/membrane interface in the positive electrode (3)

Here, wherex = hm/2, the interfacial conditions are similar to those atx = −hm/2;
hence,

is ·n = 0, (2.31)

Nk ·n = 0, k = HSO−
4 ,SO2−

4 ,VO+
2 ,VO2+. (2.32)

[NH+ ·n]+− = 0, (2.33)

φm = φe−
RT
F

[lncH+ ]+− , (2.34)

with the notation[ ]+− now being applied atx = hm/2.



Sulphuric-acid dissociation in VRFBs 11

2.2.4 Current collector/porous felt interface in the positive electrode (4)

Here, atx = hm/2+ hf , the interfacial conditions are similar to (2.25) and (2.26);
hence,

φs = Ecell, ie ·n = 0, (2.35)

Nk ·n = 0, for k = H+,HSO−
4 ,SO2−

4 ,VO+
2 ,VO2+, (2.36)

whereEcell is the cell potential and is such that

Ecell < E+−E− (discharge)
Ecell > E+−E− (charge)

}

. (2.37)

If Ecell is constant, then the VRFB is said to be in potentiostatic operation; however,
here, as in [16], we consider galvanostatic operation, so that Eq. (2.35) is replaced by

is ·n = iapp, (2.38)

whereiapp is the applied constant current density. Moreover, in termsof iapp, (2.37)
corresponds to

iapp< 0 (discharge)
iapp> 0 (charge)

}

. (2.39)

Mathematically, this means thatEcell is a function ofy and t which has to be de-
termined as part of the solution to the overall problem; however, since the electrical
conductivity of the current collectors is typically much greater than that of all other
components,Ecell is practically a function oft alone. For generality, however, we keep
iapp as a function oft, as allow us to derive a stronger result without any significant
additional algebra, although the results in Sect. 5 will be for a constant value ofiapp.

2.2.5 Remaining two sides of the membrane (5,6)

For these boundaries, which are located aty = 0 andL for −hm/2≤ x ≤ hm/2, there
is electrical insulation, so that

im ·n = 0. (2.40)

2.2.6 Negative electrode inlet (7)

At this boundary, which is located aty = 0 for −(hf + hm/2) ≤ x ≤ −hm/2, we
assume no outflow of either ionic or electronic current; thus,

is ·n = 0, ie ·n = 0. (2.41)

In addition, all of the concentrations of the ionic species are prescribed, so that

ck = cin
k (t) , k = H+,HSO−

4 ,SO2−
4 ,V2+,V3+, (2.42)

wherecin
k is the negative electrode inlet ionic concentration for speciesk. The func-

tions cin
k (t) , which must be solved for as part of the solution to the problem, are
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determined using a mass balance that assumes instantaneousmixing and negligible
reaction in the tanks and relates the change of concentration in the tanks to the prod-
uct of the flow rate and difference between the inlet and outlet concentrations [1];
hence,

V
dcin

k

dt
= ω

(

cout
k (t)− cin

k (t)
)

, (2.43)

whereV is the tank volume,ω is the volumetric flow rate andcout
k is the average

outlet concentration of speciesk, which is in turn given by

cout
k (t) =

1
hf

∫ −hm/2

−(hm/2+hf)
(ck)y=L dx for the negative electrode; (2.44)

note thatω is related touin by ω =hfWεuin, whereW denotes the width of the inlet in
the direction perpendicular tox andy. Moreover, the inlet concentrations are used to
constitute the state of charge of the system, SOC. However, as discussed in [16], there
are at least three possible definitions of this, depending onwhether one considers the
negative electrode, the positive electrode or both electrodes; to limit the discussion,
we will consider the first two, giving the expressions

SOC− =
cin

V2+

cin
V2+ + cin

V3+

, SOC+ =
cin

VO+
2

cin
VO2+ + cin

VO+
2

, (2.45)

respectively. Furthermore,cout
k (t) is not knowna priori, but must also be solved for

as part of the problem; for this, we need boundary conditionsaty = L, which we turn
to next.

2.2.7 Negative electrode outlet (8)

At this boundary, which is located aty = L, −(hf + hm/2)≤ x ≤−hm/2, we assume
no outflow of electronic current; thus,

is ·n = 0. (2.46)

Also, assuming that for all ionic species the convective fluxin the axial direction of
the felt is dominant, the sum of the migrative and diffusive fluxes is set to zero, i.e.

−Deff
k

(

zkckF
RT

∇φe+∇ck

)

·n = 0, k = H+,HSO−
4 ,SO2−

4 ,V2+,V3+. (2.47)

Combining (2.47) with the electroneutrality condition (2.4) gives

−Deff
k ∇ck ·n = 0, k = H+,HSO−

4 ,SO2−
4 ,V2+,V3+, (2.48)

∇φe ·n = 0. (2.49)
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2.2.8 Positive electrode inlet (9)

Here, aty = 0, hm/2≤ x ≤ hf + hm/2,

is ·n = 0, (2.50)

ck = cin
k (t) , k = H+,HSO−

4 ,SO2−
4 ,VO+

2 ,VO2+, (2.51)

wherecin
k is the positive electrode inlet ionic concentration for speciesk, and is given

by (2.43), wherecout
k (t) is given by (2.44), but with the upper and lower limits re-

placed byhm/2+ hf andhm/2, respectively.

2.2.9 Positive electrode outlet (10)

Here, at y = L,hm/2≤ x ≤ hf + hm/2,

is ·n = 0, (2.52)

−Deff
k ∇ck ·n = 0, k = H+,HSO−

4 ,SO2−
4 ,VO+

2 ,VO2+, (2.53)

∇φe ·n = 0. (2.54)

2.3 Initial conditions

At t = 0 : for the negative electrode, i.e. regionI ,

ck = c0
k for k = H+,HSO−

4 ,SO2−
4 ,V2+,V3+; (2.55)

for the positive electrode, i.e. regionIII ,

ck = c0
k for i = H+,HSO−

4 ,SO2−
4 ,VO+

2 ,VO2+. (2.56)

It is convenient to associate the vanadium-related quantities to the initial concentra-
tions of the electrolytes in the positive electrode and negative electrode tanks,c0

VOSO4

andc0
V2(SO4)3

respectively, and the initially prescribed state of charge, SOC0. In par-
ticular, for the negative electrode,

c0
V2+ = SOC0c0

V2(SO4)3
, c0

V3+ =
(

1−SOC0)c0
V2(SO4)3

, (2.57)

whereas at the positive electrode,

c0
VO+

2
= SOC0c0

VOSO4
, c0

VO2+ =
(

1−SOC0)c0
VOSO4

. (2.58)

Furthermore, whilstc0
k can be determined fork = V2+,V3+,VO+

2 ,VO2+ by consid-
ering the concentrations of the electrolytes, it is also necessary to prescribec0

k for
k = H+,HSO−

4 ,SO2−
4 ; for these,c0

SO2−
4

should be specified, whereasc0
H+ andc0

HSO−
4

must satisfyrd = 0.
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2.4 Summary

At this stage, the model equations are as follows:

– (2.3),(2.4),(2.9),(2.10) and (2.23) as the governing equations for

cH+ ,cHSO−
4
,cSO2−

4
,cV2+ ,cV3+ ,cVO+

2
,cVO2+,φe,φm,φs;

– (2.25)-(2.34),(2.36),(2.38),(2.40)-(2.43) and (2.46)-(2.54) as the boundary condi-
tions;

– (2.55)-(2.58) as the initial conditions.

3 Nondimensionalization

To nondimensionalize, we set

X =
x
hf
, Y =

y
L
, τ =

t
V/ωΛ

, Φe =
φe

[φ ]
, Φs =

φs

[φ ]
,

Is =
is

[

iapp
] , Ie =

ie
[

iapp
] , Iapp=

iapp
[

iapp
] , J± =

j±
[

iapp
]

/hf
, (3.1)

where

Λ =
L
[

iapp
]

c0,−
H+ uinhfF

, [φ ] =
[

iapp
]

hf

σeff
s

,

and, fork = H+,HSO−
4 ,SO2−

4 ,V2+,V3+,VO2+,VO+
2 ,

Ck =
ck

c0,−
H+

, Ŝk =
Sk

[

iapp
]

/hfF
, R̂k =

Rk

c0,−
H+ uin/L

, (3.2)

wherec0,−
H+ is the initial H+ concentration at the negative electrode and

[

iapp
]

=
maxt(iapp(t)). Since typicallyhf/L ≪ 1, Eq. (2.3) becomes

εχ
∂Ck

∂τ
+

∂Ck

∂Y
=

Dk

Pe
∂

∂X

(

zkΠCk
∂Φe

∂X
+

∂Ck

∂X

)

−Λ Ŝk −Θ R̂k, (3.3)

where

Pe =
h2

f uin

LDeff
H+

, Π =
F [φ ]
RT

, Dk =
Deff

k

Deff
H+

, χ =
L2ω

[

iapp
]

(uin)
2Vc0,−

H+ hfF
, Θ =

Lkd

c0,−
H+ uin

,

(3.4)
whereas (2.43) becomes

dCin
k

dτ
=

1
Λ

(

Cout
k (τ)−Cin

k (τ)
)

. (3.5)

Of all of the governing equations, boundary conditions and initial conditions,
we have only focused here on (3.3) and (3.5), as they are the only ones that contain
dimensionless parameters whose values are key for the forthcoming analysis. Instead,
we note that, on using the data in Tables 3-6, we have

Pe ∼ 230, Π ∼ 0.9, Λ ∼ 1.5×10−3, χ ∼ 1.1×10−4, Θ ∼ 166. (3.6)
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Fig. 3 A schematic for the overall asymptotic structure for the model with H2SO4 dissociation

4 Analysis

4.1 Overview

At this point, we indicate in general terms how the analysis will proceed. As in [16],
the whole problem can be decomposed hierarchically, givingthe following sequence:

1. Cin
H+ ,Cin

HSO−
4
,Cin

SO2−
4
,Cin

V2+ ,C
in
V3+ for the negative electrode, and hence for the bulk;

2. Cin
H+ ,Cin

HSO−
4
,Cin

SO2−
4
,Cin

VO2+ ,C
in
VO+

2
for the positive electrode, and hence for the bulk;

3. Φe,Φs in the negative electrode;
4. Φe,Φs in the positive electrode;
5. CH+ ,CHSO−

4
,CSO2−

4
,CV2+ ,CV3+ in a reaction layer of width(PeΘ)−1/2 nearX =

−H in the negative electrode;
6. CH+ ,CHSO−

4
,CSO2−

4
,CV2+ ,CV3+ in a boundary layer of widthPe−1/2 nearX =

−H in the negative electrode;
7. CH+ ,CHSO−

4
,CSO2−

4
,CVO2+ ,CVO+

2
in a reaction layer of width(PeΘ)−1/2 nearX =

H in the positive electrode;
8. CH+ ,CHSO−

4
,CSO2−

4
,CVO2+ ,CVO+

2
in a boundary layer of widthPe−1/2 nearX =

H in the positive electrode.

However, the introduction of the dissociation reaction complicates the items that
were present in [16] - 1,2,3,4,6 and 8 - as well as introducingtwo new items - 5 and
7. To understand how these steps are linked, it is instructive to consider the schematic
shown in Fig. 3, which depicts the bulk regions and the boundary layers. Moreover, in
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order to determine the cell potential,Ecell, during charging and discharging, it proves
to be only necessary to calculate steps 1-4, as was the case in[16]; for this reason,
in what follows, we will not perform any computations related to steps 5-8, although
we will indicate how they are related asymptotically to steps 1-4.

Item 1 is dealt with in Sects. 4.2 and 4.3, item 2 in Sect. 4.5 and items 3 and 4 in
Sect. 4.4.

4.2 Negative electrode (I)

Here, as governing equations, we have (3.3) fork = H+,HSO−
4 ,SO2−

4 ,V2+,V3+,

εχ
∂Ck

∂τ
+

∂Ck

∂Y
=

Dk

Pe
∂

∂X

(

zkΠCk
∂Φe

∂X
+

∂Ck

∂X

)

−Λ Ŝk−Θ R̂k, (4.1)

and the electroneutrality condition,

∑
k=H+,HSO−

4 ,SO2−
4 ,

V2+,V3+

zkCk = 0. (4.2)

Also, we note from (2.9) and (2.10) that

∂
∂X

(Is,X + Ie,X)+ δ
∂

∂Y
(Is,Y + Ie,Y ) = 0, (4.3)

whereδ = hf/L andIe,X / Is,X andIe,Y / Is,Y are theX- andY -components, respectively,
of Ie/Is. Now, becauseδ ≪ 1, (4.3) reduces to

∂
∂X

(Ie,X + Is,X)≈ 0, (4.4)

as discussed previously in [16]. Next, using (2.38) and (4.4), we have

Ie,X + Is,X ≡ Iapp(τ) for − (1+H )≤ X ≤−H , (4.5)

whereH = hm/2hf. Also, since (2.27) implies thatIs,X = 0 atX = −H , we must
also haveIe,X = Iapp(τ) . Hence, the boundary conditions atX =−H are

Dk

(

zkCkΠ
∂Φe

∂X
+

∂Ck

∂X

)

=

{

0, k = HSO−
4 ,SO2−

4 ,V2+,V3+

Ω Iapp(τ) , k = H+,
, (4.6)

whereΩ =
[

iapp
]

hf/zH+c0,−
H+ Deff

H+F and, atX =−(1+H ) ,

zkCkΠ
∂Φe

∂X
+

∂Ck

∂X
= 0 for k = H+,HSO−

4 ,SO2−
4 ,V2+,V3+. (4.7)

From (3.6), we have thatPe ≫ 1,Θ ≫ 1,Λ ≪ 1,χ ≪ 1, so that (4.1) reduces, at
leading order, to

∂Ck

∂Y
≈ 0, k = V2+,V3+, (4.8)

R̂k≈ 0, k = H+,HSO−
4 ,SO2−

4 ; (4.9)
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thence,Ck ≡Ck (X ,τ) for k = V2+,V3+, and hence

Ck ≡Cin
k (τ) , k = V2+,V3+, (4.10)

in view of the nondimensional version of (2.42), whereas (4.9) implies that

CH+ ≈
CHSO−

4

B
, (4.11)

whereB = (1−β )/(1+β ). From electroneutrality, we now have
(

zH+ +BzHSO−
4

)

CH+ +CSO2−
4

=−zV2+CV2+ (τ)− zV3+CV3+ (τ) , (4.12)

which indicates that the linear combination ofCH+ andCSO2−
4

on the left-hand side

should be a function ofτ. Whilst this still leaves the possibility thatCH+ andCSO2−
4

can both be functions ofX ,Y andτ, the simpler alternative, which is borne out by the
later computations, is that they are just functions ofτ, and thence

Ck ≡Cin
k (τ) , k = H+,HSO−

4 ,SO2−
4 , (4.13)

as fork = V2+,V3+. Now, multiplying (4.1) byzk, summing, using electroneutrality,
Eq. (4.10) and

∑
k=H+ ,HSO−

4 ,SO2−
4 ,

V2+,V3+

zkR̂k = 0, (4.14)

we obtain

Γ− (τ)
∂ 2Φe

∂X2 =−J−, (4.15)

where we use the fact thatŜk = skJ−, and with

Γ− (τ) = λ ∑
k=H+,HSO−

4 ,SO2−
4 ,

V2+,V3+

z2
kDkC

in
k (τ) , (4.16)

whereλ := Π/ΛPe ∼ O(1). Note also at this point that we have, from the dimen-
sionless form of the second equation in (2.9), Ohm’s law, i.e. Eq. (2.7), and the nondi-
mensional electronic current density in Eq. (3.2),

∂ 2Φs

∂X2 = J−. (4.17)

Recall also thatJ− is a function ofΦe and Φs, so that (4.15) and (4.17) will be
coupled.

As regards boundary conditions for (4.15) and (4.17), we have, forΦs,

∂Φs

∂X
= 0 atX =−H , (4.18)

∂Φs

∂X
= Iapp(τ) atX =−(1+H ) . (4.19)
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As for Φe, we can use (4.7) and electroneutrality to obtain

∂Φe

∂X
= 0 atX =−(1+H ) . (4.20)

However, we still need a boundary condition forΦe at X = −H ; this is not entirely
straightforward to derive, since we cannot simply replaceCk by Cin

k (τ) in Eqs. (4.6)
and (4.7) without justification, in view of the nested boundary-layer structure that
was indicated in Fig. 3. Presently, in Sect. 4.4, the required condition will be shown
to be Eq. (4.53), which in fact has the same form as that in [16], even though the
boundary-layer structure there was not of nested type.

Since the right-hand side of (4.15) depends onΦe,Φs,Cin
V2+ andCin

V3+ , and since
the latter two are functions ofτ only, it is clear that there is a self-consistent solution
structure for whichΦe andΦs are functions only ofX andτ, and not ofY.

4.3CH+ ,CHSO−
4
,CV2+ ,CV3+ ,CSO2−

4
in the bulk

Integrating (4.1) over−(1+H ) ≤ X ≤ −H and applying boundary conditions
(4.6) and (4.7), we obtain
(

εχ
∂

∂τ
+

∂
∂Y

)(

∫ −H

−(1+H )
CkdX

)

=−Λsk

∫ −H

−(1+H )
J−dX , for k = V2+,V3+.

(4.21)
Integrating (4.21) over 0≤ Y ≤ 1 and using the result from the supplementary mate-
rial in [16] that

∫ −H

−(1+H )
J−dX =−zH+ Iapp(τ) , (4.22)

we see that

εχ
∂

∂τ

(

∫ 1

0

∫ −H

−(1+H )
CkdXdY

)

+Cout
k −Cin

k = ΛzH+skIapp(τ), for k = V2+,V3+,

(4.23)
where we have used

∫ −H

−(1+H )
Ck|

Y=1
Y=0dX =Cout

k −Cin
k . (4.24)

Also, from (3.5), we have

ε∆
d
dτ

(

∫ 1

0

∫ −H

−(1+H )
CkdXdY

)

+
dCin

k

dτ
= zH+sk, (4.25)

where∆ = χ/Λ (≪ 1). Note that althoughCk for all k, as proposed in (4.10), andΦe,
as proposed in (4.15), would satisfy all of the boundary conditions atX =−(1+H ) ,
they would not be able to satisfy all of the boundary conditions atX = −H . Thus,
a boundary-layer structure is necessary nearX = −H ; we give the details of this in
Sect. 4.4.
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Equation (4.25) identifies∆ as a small parameter, and it is appropriate at this
juncture to introduce a regular perturbation expansion forϕ = (Ck,Cin

k ) in the form

ϕ = ϕ0+∆ϕ1+O
(

∆2) . (4.26)

Thus, we obtain, from (4.25) and the dimensionless form of (2.55) atO(1),

Cin
k,0 =C0

k + zH+sk

∫ τ

0
Iapp
(

τ ′
)

dτ ′, for k = V2+,V3+. (4.27)

For later use, we will also needCin
k,1, which satisfies, on considering Eq. (4.25) at

O(∆) ,
dCin

k,1

dτ
=−ε

dCin
k,0

dτ
, (4.28)

subject to
Cin

k,1 = 0 atτ = 0, (4.29)

which comes from the dimensionless form of (2.55) atO(∆); thence,Cin
k,1 is easily

found to be

Cin
k,1 =−skε

∫ τ

0
Iapp
(

τ ′
)

dτ ′. (4.30)

Note that the expressions in (4.27) and (4.30) have turned out to be identical to the
corresponding ones in [16], meaning that SOC− in Eq. (2.45) will also be identical.

Similarly, integrating (4.1) fork = H+,HSO−
4 ,SO2−

4 , we obtain
(

εχ
∂

∂τ
+

∂
∂Y

)(

∫ −H

−(1+H )
CkdX

)

=−Θ
∫ −H

−(1+H )
R̂kdX ; (4.31)

integrating over 0≤ Y ≤ 1, we obtain

εχ
∂

∂τ

(

∫ 1

0

∫ −H

−(1+H )
CkdXdY

)

+Cout
k −Cin

k =−Θ
∫ 1

0

∫ −H

−(1+H )
R̂kdXdY. (4.32)

From (3.5), we have

ε∆
∂

∂τ

(

∫ 1

0

∫ −H

−(1+H )
CkdXdY

)

+
dCin

k

dτ
=−

Θ
Λ

∫ 1

0

∫ −H

−(1+H )
R̂kdXdY. (4.33)

We can now note that

∑
k=HSO−

4 ,SO2−
4

{

ε∆
∂

∂τ

(

∫ 1

0

∫ −H

−(1+H )
CkdXdY

)

+
dCin

k

dτ

}

= 0, (4.34)

whereupon we obtain

Cin
HSO−

4 ,0(τ)+Cin
SO2−

4 ,0
(τ) =C0

HSO−
4
+C0

SO2−
4

(4.35)

and
Cin

HSO−
4 ,1(τ)+Cin

SO2−
4 ,1

(τ) = 0. (4.36)
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With (4.11) implying that

Cin
H+,0 (τ) =

Cin
HSO−

4 ,0
(τ)

B
, Cin

H+ ,1 (τ) =
Cin

HSO−
4 ,1

(τ)

B
, (4.37)

we find from electroneutrality that

Cin
H+,0 (τ) = 1−

zH+I− (τ)

zH+ +B

(

zHSO−
4
− zSO2−

4

) , (4.38)

Cin
H+,1 (τ) =

εI− (τ)

zH+ +B

(

zHSO−
4
− zSO2−

4

) , (4.39)

where

I− (τ) = (zV2+sV2+ + zV3+sV3+)
∫ τ

0
Iapp
(

τ ′
)

dτ ′,

and thence

Cin
HSO−

4 ,0 (τ) = B



1−
zH+I− (τ)

zH+ +B

(

zHSO−
4
− zSO2−

4

)



 , (4.40)

Cin
HSO−

4 ,1 (τ) =
BεI− (τ)

zH+ +B

(

zHSO−
4
− zSO2−

4

) , (4.41)

Cin
SO2−

4 ,0
(τ)=C0

HSO−
4
+C0

SO2−
4
−B



1−
zH+I− (τ)

zH+ +B

(

zHSO−
4
− zSO2−

4

)



 , (4.42)

Cin
SO2−

4 ,1
(τ)=−

BεI− (τ)

zH+ +B

(

zHSO−
4
− zSO2−

4

) . (4.43)

Observe also that the corresponding equations in [16] for (4.38)-(4.43) were

Cin
H+ ,0 (τ) = 1− zH+I− (τ) , (4.44)

Cin
H+ ,1 (τ) = εzH+I− (τ) , (4.45)

Cin
HSO−

4 ,0 (τ) =C0
HSO−

4
, (4.46)

Cin
HSO−

4 ,1 (τ) = 0, (4.47)

Cin
SO2−

4 ,0
(τ) =C0

SO2−
4
, (4.48)

Cin
SO2−

4 ,1
(τ) = 0. (4.49)

Thus, there is no single substitution that can be used in (4.38)-(4.43) so as to obtain
(4.44)-(4.49); the closest rule that can be arrived at is to setB to zero if it is in a term
that containsI− (τ) , but to use (4.11) and setB =C0

HSO−
4

otherwise.
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4.4 Ionic potential,Φe, and electronic potential,Φs

Having determinedCin
k (τ) to O(∆), we return to the problem of determiningΦe,

recalling that this satisfies (4.15), subject to (4.20) and acondition atX =−H which
we have yet to establish. To determine this, we need to consider the boundary-layer
structure nearX =−H ; this has already been signposted in Fig. 3, although we give
the analytical justification here.

As in [16], we set

X =−
(

H +Pe−1/2X̂
)

, Φe = Φe(Y,−H ,τ)+Π−1Φ̄e
(

X̂ ,Y,τ
)

,

Ck = Ĉk, k = H+,HSO−
4 ,SO2−

4 ,V2+,V3+, (4.50)

whereΠ was defined in Eq. (3.4), Eqs. (4.1) gives, at leading order, for 0< X̂ < ∞,

∂Ĉk

∂Y
= Dk

∂
∂ X̂

(

zkĈk
∂Φ̄e

∂ X̂
+

∂Ĉk

∂ X̂

)

−Λ Ŝk−Θ R̂k, k = H+,HSO−
4 ,SO2−

4 ,V2+,V3+;

(4.51)
observe thatΦe(Y,−H ,τ) is not yet known at this stage, but there is no need to
know it yet either, since it does not appear in (4.51). Recalling thatΛ ≪ 1 andΘ ≫ 1
suggests that we can neglect the next to last term on the right-hand side of (4.51), but
must retain the last one. However, multiplying (4.51) byzk, summing and applying
electroneutrality, we obtain

∑
k=H+,HSO−

4 ,SO2−
4 ,

V2+,V3+

zkDk
∂

∂ X̂

(

zkĈk
∂Φ̄e

∂ X̂
+

∂Ĉk

∂ X̂

)

= 0, (4.52)

sinceΛ ≪ 1 and in view of (4.14); then, integrating (4.52) with respect to X̂ indicates
that

∑
k=H+ ,HSO−

4 ,SO2−
4 ,

V2+,V3+

zkDk

(

zkĈk
∂Φ̄e

∂ X̂
+

∂Ĉk

∂ X̂

)

is a function ofY andτ. We observe that the above expression is theX-component of
the nondimensional ionic current density,Ie, which was defined in (3.2); this result
indicates thatIe is conserved across the boundary layer. This is sufficient for us to
be able to use the boundary condition atX = −H , which is clearly well inside the
boundary layer, as a boundary condition for the ionic current density in the bulk of
the electrolyte; as a consequence,

Γ− (τ)
∂Φe

∂X
= Iapp(τ) at X =−H . (4.53)

However, notice that prior to summing (4.51) overk, we have

R̂k ≈ 0 for k = H+,HSO−
4 ,SO2−

4 ,
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at leading order, sinceΘ ≫ 1. This would simply lead tôCH+ = ĈHSO−
4
/B, and it is

impossible that a solution based around this identity couldsatisfy all of the bound-
ary conditions given in (4.6). Consequently, there has to bea nested boundary layer
for which X̂ ∼ Θ−1/2, in which the diffusion term in (4.51) balances the chemical
reaction term; thus, overall, we have thatX ∼ (PeΘ)−1/2 in this layer, as shown in
Fig. 3. We do not document the resulting equations for this layer, as there is no need
to solve them, as far as the leading-order problem is concerned; physically, the ionic
species that participate in the chemical reaction, i.e. H+,HSO−

4 ,SO2−
4 , vary rapidly

across this layer, but with advection playing a negligible role. With hindsight, the
mathematical similarities between the VRFB model with and without acid dissoci-
ation follow very closely those in multi-ion models for the electrolytic pickling of
steel with and without bulk chemical reactions [29–32], even though the two situa-
tions are very different. First of all, it should be recalledthat in the earlier models
for electrolytic pickling, it is only the ionic current thatis solved for, whereas here,
for a porous electrode, we solve for both ionic and electronic currents; thus, there is
an additional field equation, i.e. for the electronic potential, which is not present in
the pickling models. Second, in electrolytic pickling, theionic current at leading or-
der is a constant across the entire domain between two electrodes, whereas here, it is
only constant across the concentration boundary layer. Third, the electrolytic pickling
models were for a steady state, whereas the current VRFB model is time-dependent.

To re-cap, solving (4.15), (4.17)-(4.20) and (4.53) will determineΦe andΦs in
the negative electrode, and in particularΦe at X = −H . We can then findΦ−

m , i.e.
Φm at X =−H , from the nondimensional version of (2.30), that is

Φ−
m = Φe−

1
Π

[− lnCH+ ]+− . (4.54)

Next, denoting the value ofCH+ inside the membrane,cfcs/c0,−
H+ , asCH+ ,m, we see

from (2.23) that

−
z2
H+F2c0,−

H+

RThm
[φ ]DH+,mCH+,m

(

Φ+
m −Φ−

m

)

= Iapp(τ), (4.55)

which givesΦm at X = H ; denoting this byΦ+
m , we have

Φ+
m = Φe−

1
Π

[lnCH+ ]+− , (4.56)

i.e. this will give Φe at X = H also. Note that, by this stage, we have determined
the potentials for the negative electrode and the membrane without having to deter-
mine those in the positive electrode; however, we need to findthem there in order to
determine the cell potential, and we thus turn to the positive electrode.

4.5 Positive electrode (III)

Here, as governing equations, we have (3.3) fork = H+,HSO−
4 ,SO2−

4 ,VO2+,VO+
2 ,

εχ
∂Ck

∂τ
+

∂Ck

∂Y
=

Dk

Pe
∂

∂X

(

zkΠCk
∂Φe

∂X
+

∂Ck

∂X

)

−Λ Ŝk−Θ R̂k, (4.57)
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and the electroneutrality condition,

∑
k=H+,HSO−

4 ,SO2−
4 ,

VO2+,VO+
2

zkCk = 0. (4.58)

The boundary conditions atX = H are

Dk

(

zkΠCk
∂Φe

∂X
+

∂Ck

∂X

)

=

{

0, k = HSO−
4 ,SO2−

4 ,VO2+,VO+
2

Ω Iapp(τ), k = H+,
, (4.59)

and, atX = 1+H ,

zkΠCk
∂Φe

∂X
+

∂Ck

∂X
= 0 for k = H+,HSO−

4 ,SO2−
4 ,VO2+,VO+

2 . (4.60)

For this electrode also, the solution can be determined hierarchically. We skip the
majority of the details, which are similar to those for the negative electrode. ForΦe

andΦs, we have

Γ+ (τ)
∂ 2Φe

∂X2 =−J+, (4.61)

∂ 2Φs

∂X2 = J+, (4.62)

respectively, where we have used the fact thatŜk = skJ+, and where

Γ+ (τ) = λ ∑
k=H+,HSO−

4 ,SO2−
4 ,

VO2+,VO+
2

z2
kDkC

in
k (τ) ; (4.63)

Eqs. (4.61) and (4.62) are subject to the boundary conditions

−Γ+ (τ)
∂Φe

∂X
= Iapp(τ),

∂Φs

∂X
= 0 atX = H , (4.64)

∂Φe

∂X
= 0,

∂Φs

∂X
= Iapp(τ) atX = 1+H . (4.65)

Also, we have, fork = VO2+,VO+
2 ,

ε∆
∂

∂τ

(

∫ 1

0

∫ 1+H

H

CkdXdY

)

+
dCin

k

dτ
=−sk

∫ 1+H

H

J+dX , (4.66)

and, fork = HSO−
4 ,SO2−

4 ,

ε∆
∂

∂τ

(

∫ 1

0

∫ 1+H

H

CkdXdY

)

+
dCin

k

dτ
=−

Θ
Λ

∫ 1

0

∫ −H

−(1+H )
R̂kdXdY, (4.67)
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whence

Cin
H+,0 (τ) =C0,+

H+ −
zH+I+ (τ)

zH+ +B

(

zHSO−
4
− zSO2−

4

) , (4.68)

Cin
HSO−

4 ,0 (τ) = B



C0,+
H+ −

zH+I+ (τ)

zH+ +B

(

zHSO−
4
− zSO2−

4

)



 , (4.69)

Cin
SO2−

4 ,0
(τ)=C0

HSO−
4
+C0

SO2−
4
−B



C0,+
H+ −

zH+I+ (τ)

zH+ +B

(

zHSO−
4
− zSO2−

4

)



 , (4.70)

Cin
VO2+,0 (τ) =C0

VO2+ + zH+sVO2+

∫ τ

0
Iapp
(

τ ′
)

dτ ′, (4.71)

Cin
VO+

2 ,0 (τ) =C0
VO+

2
+ zH+sVO+

2

∫ τ

0
Iapp
(

τ ′
)

dτ ′, (4.72)

whereC0,+
H+ = c0,+

H+ /c0,−
H+ , with c0,+

H+ as the initial H+ concentration at the positive
electrode, and

Cin
H+,1 (τ) =

εI+ (τ)

zH+ +B

(

zHSO−
4
− zSO2−

4

) , (4.73)

Cin
HSO−

4 ,1 (τ) =
BεI+ (τ)

zH+ +B

(

zHSO−
4
− zSO2−

4

) , (4.74)

Cin
SO2−

4 ,1
(τ)=−

BεI+ (τ)

zH+ +B

(

zHSO−
4
− zSO2−

4

) , (4.75)

Cin
VO2+,1 (τ) =−zH+sVO2+ε

∫ τ

0
Iapp
(

τ ′
)

dτ ′, (4.76)

Cin
VO+

2 ,1 (τ) =−zH+sVO+
2

ε
∫ τ

0
Iapp
(

τ ′
)

dτ ′, (4.77)

with

I+ (τ) =
(

sVO+
2

zVO+
2
+ sVO2+zVO2+

)

∫ τ

0
Iapp
(

τ ′
)

dτ ′.

Again, note that the expressions in (4.71),(4.72),(4.76) and (4.77) have turned out to
be the same as the corresponding ones in [16], meaning that SOC+ in Eq. (2.45) will
also be identical; this was perhaps not to have been expected, since H+ participates
both in the electrochemical reaction and in acid dissociation reaction. Observe also
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that the corresponding equations in [16] for (4.68)-(4.70)and (4.73)-(4.75) were

Cin
H+ ,0 (τ) =C0,+

H+ − zH+I+ (τ) , (4.78)

Cin
HSO−

4 ,0 (τ) =C0
HSO−

4
, (4.79)

Cin
SO2−

4 ,0
(τ) =C0

SO2−
4
, (4.80)

Cin
H+ ,1 (τ) =

εzH+I+ (τ)

zH+ +B

(

zHSO−
4
− zSO2−

4

) , (4.81)

Cin
HSO−

4 ,1 (τ) = 0, (4.82)

Cin
SO2−

4 ,1
(τ) = 0, (4.83)

respectively. As for the negative electrode, there is no single substitution that can be
used in (4.38)-(4.43) so as to obtain (4.44)-(4.49). This time, settingB to zero if
it is in a term that containsI+ (τ) ,but using (4.11) and settingB = C0

HSO−
4
/C0+

H+−

otherwise, will reduce (4.68)-(4.70) and (4.73)-(4.75) to(4.78)-(4.83), respectively.

5 Results

Two numerical tasks remain:

A) the solution of the transient 2D model, consisting of Eqs.(2.3),(2.4),(2.9),(2.10),
and (2.23), subject to Eqs. (2.25)-(2.34),(2.36),(2.38),(2.40)-(2.43) and (2.46)-
(2.58);

B) the solution of the asymptotic problem derived in Sects. 4.2-4.5, which consists
of Eqs. (4.15),(4.17),(4.61), and (4.62), subject to Eqs. (4.18)-(4.20),(4.53),(4.64)
and (4.65), with input forΓ± (τ) andJ± (τ) coming from Eqs. (4.27),(4.30),(4.38)-
(4.43) and (4.68)-(4.77).

These are tackled are in the same way as given in the supplementary material
of [16], and the details are therefore not presented here; however, we mention in
passing that the 250-fold saving in computational time whenusing the asymptotically
reduced model, as compared to the original formulated transient 2D model, was again
noted. Instead, we move on towards a presentation of the results. In what follows, we
consider solutions for the galvanostatic case, so thatiapp is constant during charging
and discharging, giving

∫ τ

0
Iapp
(

τ ′
)

dτ ′ = τ. (5.1)

Also, to enable a fair comparison between the results of the models with and with-
out dissociation, we have taken the same criterion for setting the charge time in the
current model as was used in the 2D transient model in [16], asthis enables us to use
those results directly. In turn, the criterion used in [16] was that the state of charge,
SOC, should reach 0.95. Thanks to the asymptotic analysis in[16], it was found
that the two expressions for SOC given in Eq. (2.45) collapsed onto each for the re-
sults presented there; indeed, from Eqs. (4.27),(4.30),(4.71),(4.72),(4.76) and (4.77),
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it is clear that this will also be the case here. Moreover, although nondimensional
variables have served their purpose in helping to identify leading-order asymptotic
simplifications, we return to dimensional variables, for the most part, for considering
actual model results.
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Fig. 4 Inlet concentrations at the negative electrode as functions of time,t : (a) cin
V2+ ; (b) cin

V3+ ; (c) cin
H+ ;

(d) cin
HSO−

4
; (e) cin

SO2−
4
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5.1 Model with acid dissociation

Fig. 4(a)-(e) show the inlet concentration for the various species at the negative elec-
trode as functions of time,t, for the 2D transient and two-term asymptotic models.
For all species, it is evident that both models predict a linear evolution, and that the
agreement between the two models is very good. We point out that we do not plot
the solutions from the one-term asymptotic model, as this was already found to be
not accurate enough for the model without acid dissociationin [16]. Essentially, this
is because∆ (∼ 0.1) , although being treated as asymptotically small, is not numer-
ically small enough; in fact, the results were found to be so inaccurate in [16] as to
predict near total depletion of V3+ and VO+

2 ions during charging. Similarly, Fig.
5(a)-(e) shows a comparison of the the inlet concentration for the various species at
the positive electrode. Moreover, if we focus on the (a) and (b) plots in Figs. 4 and 5
and use the equations in (2.45) for the state of charge, we observe that SOC+=SOC−,
as was also the case in [16].

Fig. 6 shows the charge-discharge curve at a current densityof 400 A m−2 for
2D transient and two-term asymptotic model predictions; asin [16], the agreement is
very good, even though we have appended an additional bulk reaction to the model.

5.2 Comparison with the no-dissociation model

It is of interest to compare the results of the models with andwithout dissociation.
We do not do this for all inlet profiles this time, but just select cin

H+ for both electrodes.
The comparison of the two-term asymptotic profiles is shown in Fig. 7. Thus, we see
that during charging/discharging,cin

H+ for the negative electrode increases/decreases
more slowly if dissociation is taken into account, whilstcin

H+ for the positive electrode
increases/decreases more quickly if dissociation is takeninto account. As regards the
other ions:

– thecin
V2+ ,cin

V3+ ,c
in
VO2+ andcin

VO+
2

profiles are unaffected;

– whereascin
HSO−

4
andcin

SO2−
4

remain constant when dissociation is neglected, they

increase/decrease linearly during charging, and decrease/increase linearly during
discharging.

In addition, in Fig. 8, we compare the charge-discharge curve from the asymptotic
model in [16] with the curve from the asymptotic model in Fig.6; here also, we
find the two curves to be more or less identical, meaning that the inclusion of the
dissociation reaction appears to have no net effect on thesecurves.

To understand why the charge-discharge curves in Fig. 8 appear to be so similar, it
suffices to considerJ± andΓ± in the two asymptotic models; thus, for this, we return
to nondimensional variables. First of all, referring back to Eqs. (2.11), (2.13), (2.14)
and (2.16), we can note thatJ− is identical in the two models, sincecin

V2+ andcin
V3+ are,

as seen in Fig. 4(a) and (b). On the other hand, referring backto Eqs. (2.12), (2.13),
(2.15) and (2.17), we can expect that there should be a difference inJ+, becausecin

H+

in the positive electrodes is different in the two models, asseen in Fig. 5(a). Similarly,
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Fig. 5 Inlet concentrations at the positive electrode as functions of time,t : (a) cin
VO2+ ; (b) cin

VO+
2

; (c) cin
H+ ;

(d) cin
HSO−

4
; (e) cin

SO2−
4

we would expectΓ± to be different, since they both containcin
H+ , cin

HSO−
4

andcin
SO2−

4
,

whose profiles change significantly when dissociation is included.Γ± are plotted as
functions ofτ in Fig. 9, and it is clear that, although each profile is slightly affected by
the dissociation reaction, the effect is insignificant as regards generating a substantial
enough difference in the charge-discharge curve is concerned.
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Fig. 6 Charge-discharge curve at a current density of 400 A m−2 , as predicted by the 2D transient and
the asymptotic models
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Fig. 7 Comparison ofcin
H+ for the asymptotic models with and without acid dissociation: (a) negative

electrode; (b) positive electrode

Lastly, we consider a comparison of the model results with available experimental
data, which would normally be done via charge-discharge curve data. As seen in
Fig. 8, the results we have obtained for the cell potential asa function of time are
more or less identical to those in [16], where a comparison with experimental data
obtained wheniapp= 400 Am−2 was made; see Fig. 4 therein. As the agreement
was reasonable but not perfect, it was suggested that a way toimprove it would be to
adjust the value ofEcell upwards by 0.04V, as had been done previously in [18], where
the required adjustment, of 0.072 V, had been even greater; the rationale for this was
that because open circuit voltages are not able to behave in astandard Butler-Volmer-
type way, this may have a large impact onEcell . These comments notwithstanding,
the model in [9] gave much better agreement than either the model in [16] or that
in [18]; it was suggested in [16] that this may have been due tothe fact that extra
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Fig. 8 Charge-discharge curve at a current density of 400 A m−2 , including and excluding the dissociation
of sulphuric acid, as predicted by the asymptotic model
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Fig. 9 (a)Γ− as a function of dimensionless time,τ ; (b) Γ+ as a function of dimensionless time,τ

physics, in the form of acid dissociation and vanadium crossover, had been included,
although it would have been difficult to tell whether these factors are decisive since
no attempt was made in [9] to compare against a model that did not include these
effects. In consequence, the current work at least rules outacid dissociation as a factor
in the discrepancy. Here, however, we expand the discussionregarding experimental
validation a little further, by considering comparison against a different data set and
at two differing applied current densities [3]; the detailsare given in appendix A.

6 Conclusions

This paper has used asymptotic and numerical methods to extend a recent 2D tran-
sient model for the operation of a vanadium redox flow battery[16], so as to include
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the dissociation of sulphuric acid in the battery’s porous flow-through electrodes. As
in the earlier model, it was found that asymptotic analysis was able to recover the
solution structure that is present in the full model. In addition, the analysis was able
to explain why the charge-discharge curve remains unaffected by whether acid disso-
ciation is included or not, even though the concentrations of the ionic species in the
recirculating tanks, although not the state of charge, are considerably different in the
two models.

Moreover, the fact that it has been possible to add extra physics onto the base
model, whilst still making use of the original asymptotic framework, provides hope
that further phenomena that are believed to be of importancein VRFB modelling -
oxygen and hydrogen evolution, thermal effects, vanadium crossover - can be accom-
modated in the same way.
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Appendix A: Model validation against experimental data from [3]

For the purposes of validating our model, we use experimental data from You et
al. [3], who provide the cell potential as a function of stateof charge for charging
and discharging at 400 and 800 Am−2; the comparison is shown in Fig. A.1. The
agreement is very good for the charging phase, although lessso for the discharging
phase, where it is in line with the comparison against this experimental data made by
Chen et al. [11], albeit it only at 400 Am−2. It can be noted that You et al. [3] also
presented a model which gave the best agreement of all at both400 and 800 Am−2,
although a shift in cell potential of 140 mV was required to achieve it; here, we have
not employed any shift. Note also that we have used the same model data as in [3],
although with the value for active surface area -A in equations (2.11) and (2.12) -
given in [9].

Lastly, we point out that, even though the model is now being used for a com-
pletely different set of parameter values, and in particular for a much higher applied
current density, the agreement between the results of the 2Dtransient model and the
reduced asymptotic model remains very good.
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