One-step electrochemical approach of enzyme immobilization for bioelectrochemical applications
Enzymatic bioelectrochemistry represents the marriage of electrochemistry and enzymatic biocatalysis, and has led to important applications for biosensors, biofuel cells, and bioelectrocatalysis. Enzyme immobilization is the basis of enzymatic bioelectrochemistry, as immobilization itself determines the enzyme/material interface and thus the electrochemical performance. Amongst the range of methods of enzyme immobilization, one-step electrochemical approaches feature rapid immobilization and good control over the processes, enabling par?tial or total use of the electrode surface. In this mini-review, we first briefly introduce the operating principles of bioelectrochemical applications based on enzyme modified electrodes. We then overview recent progress in utilizing conductive polymers, redox-active modified polymers, sol–gel silica and electrochemically assistant adsorption for enzyme immobilization via one-step electrochemical approaches. The use of conductive polymers for in situ enzyme immobilization is our major focus. Perspectives for future work are also described.
Funding
2022M710736
History
Publication
Synthetic Metals 291, 117205Publisher
ElsevierAlso affiliated with
- Bernal Institute
External identifier
Department or School
- School of Engineering