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Abstract 16 

Since drug based inhibition of dipeptidyl peptidase IV (DPP-IV) is employed in type 2 (T2D) 17 

diabetes therapy, food protein hydrolysates which inhibit DPP-IV may also have potential in the 18 

management of T2D. Specific peptide motifs, consisting of an N-terminal Trp and/or a Pro at 19 

position 2, have been associated with relatively potent inhibition of DPP-IV. Different modes of 20 

inhibition which may, or may not, involve the active site of DPP-IV have been identified. Animal 21 

studies have shown that food protein hydrolysates having in vitro DPP-IV inhibitory activity 22 

generally yield antidiabetic effects in vivo. However, clear evidence of such effects in humans is 23 

still required in order to establish the potential role of food protein hydrolysates in the 24 

management of T2D. 25 

 26 

27 
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Introduction 28 

Type 2 diabetes (T2D) is a major component of the metabolic syndrome. It has been shown to 29 

affect a growing number of people worldwide. While the etiology of T2D is not fully understood 30 

a link with obesity or high abdominal body fat content has been proposed. The role of food 31 

proteins in the regulation of serum glucose in humans has been demonstrated in several human 32 

intervention studies [for reviews, see: 1, 2, 3]. Human intervention studies with food proteins and 33 

food protein hydrolysates have involved a wide range of dietary proteins originating from animal 34 

and marine as well as plant sources [4-6]. However, the mechanism(s) of action explaining the 35 

antidiabetic effects observed are currently not fully understood. It is thought that dietary amino 36 

acids and short peptides may impact in a number of ways including: (a) the direct stimulation of 37 

pancreatic cells leading to increased insulin secretion, (b) inhibition of metabolic enzymes 38 

involved in the regulation of serum glucose, such as dipeptidyl peptidase IV (DPP-IV) and -39 

glucosidase, and (c) secretion of incretins (i.e., glucose dependent insulinotropic polypeptide 40 

(GIP) and glucagon-like peptide-1 (GLP-1)). 41 

DPP-IV is an ubiquitous enzyme which has been shown to cleave and inactivate GLP-1 and GIP 42 

in the post-prandial phase, leading to a loss in their insulinotropic activity [7]. DPP-IV inhibition 43 

is currently a key target in the treatment of T2D. In this context, different DPP-IV inhibitory 44 

drugs, belonging to a class known as gliptins, have been developed and marketed [8]. Gliptins 45 

generally have a high potency, with a half maximal inhibitory concentration (IC50) in the nM 46 

range. Interestingly, over the past 30 years, different naturally-derived peptides have been shown 47 

to inhibit DPP-IV. DPP-IV inhibitory peptide sequences have notably been identified within food 48 

proteins. The DPP-IV inhibitory properties of food protein hydrolysates and associated peptides 49 

have recently been reviewed [1, 3, 9, 10]. To date, the most potent DPP-IV inhibitory peptide is 50 

Ile-Pro-Ile (diprotin A), which was originally identified in Bacillus cereus culture filtrates [11]. 51 

Ile-Pro-Ile is also present in several dietary proteins such as bovine -casein, chicken egg 52 
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ovotransferrin and the phycoerythrin β subunit from the macroalga Palmaria palmata [12]. 53 

The aim of this review was to assess the current literature in respect to food protein 54 

hydrolysates/peptides and their DPP-IV inhibitory properties. The link between DPP-IV 55 

inhibition and antidiabetic effects was also assessed with the view of determining the potential of 56 

food protein hydrolysates for the management of T2D. 57 

Potential food protein sources of DPP-IV inhibitory peptides 58 

Different dietary proteins have been identified as a source of DPP-IV inhibitory peptides using in 59 

silico approaches. In silico approaches have focused on researching previously identified DPP-IV 60 

inhibitory peptide sequences within various food proteins. The outcomes of these studies indicate 61 

that milk proteins are particularly rich in DPP-IV inhibitory peptide motifs [12, 13]. The 62 

limitations of in silico approaches reside in the necessity to subsequently develop a strategy (i.e., 63 

enzymatic hydrolysis or fermentation) to release the target peptides from the protein. 64 

To date, most of the in vitro studies appear to have used enzymatic hydrolysis of food proteins to 65 

release DPP-IV inhibitory peptides [14-18]. There are a limited number of studies which 66 

demonstrate that microbial fermentation could also be utilized for the generation of DPP-IV 67 

inhibitory peptides. Water soluble extracts from cheese, for example, have been identified for 68 

their DPP-IV inhibitory properties [19]. Food protein hydrolysis is typically conducted in 69 

aqueous media using commercially available food-grade enzyme preparations which are added at 70 

a known enzyme to substrate ratio. Several studies have described the utilization of 71 

gastrointestinal (e.g., pepsin, trypsin, Pancreatin, Corolase PP), plant (e.g., bromelain and papain) 72 

or microbial (e.g., Alcalase, Flavourzyme and Protamex) [14, 15, 18, 20-24] enzyme preparations 73 

to generate food protein hydrolysates with DPP-IV inhibitory properties. The hydrolysis 74 

conditions (i.e., pH and temperature) are generally chosen to correspond to the optimum 75 

conditions for the enzyme activity employed with hydrolysis durations of up to several hours to 76 

ensure the release of bioactive peptides. Further fractionation of food protein hydrolysates, using 77 
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techniques such as ultrafiltration, solid phase extraction and chromatographic (reverse-phase, 78 

cation-exchange, size-exclusion and thin layer) separations, have been used to obtain fractions 79 

enriched in more potent DPP-IV inhibitory peptides [16, 18, 25-29]. 80 

Generally, the percentage of DPP-IV inhibition is assessed following incubation of DPP-IV with 81 

the peptides/hydrolysates in the presence of a chromogenic substrate (e.g., Gly-Pro-p-nitroanilide 82 

(pNA), Gly-Pro-aminomethylcoumarin (AMC) or Gly-Pro-aminoluciferin). Various in vitro 83 

protocols, which may vary in terms of the origin of DPP-IV (human recombinant vs. animal 84 

extract), nature of the DPP-IV substrate, enzyme to substrate ratio, duration of incubation and pH, 85 

have been described in the scientific literature to assess the DPP-IV inhibitory potential of food 86 

protein-derived peptides [12]. These differences in experimental conditions may explain, in 87 

certain instances, the variations observed for the potency of selected peptide sequences [30]. 88 

While most of the in vitro evaluation of DPP-IV inhibitory properties of food protein 89 

hydrolysates has been conducted with milk proteins [14, 15, 19, 31-34], alternative protein 90 

substrates from meat/animal skin [35-38], marine [18, 24, 39-41] and plant [17, 20-23, 42-45] 91 

origin have also been described in the literature. To date, the most potent in vitro DPP-IV 92 

inhibitory food protein hydrolysates have been reported for a peptic digest of bovine -93 

lactalbumin with an IC50 of 0.036 mg mL
-1

 [31] and a simulated gastro-intestinal digest 94 

(pepsin/Pancreatin) of Navy beans having an IC50 of 0.093 mg mL
-1

 [43]. Differences in DPP-IV 95 

inhibition potency between food protein hydrolysates may generally be explained by their unique 96 

peptide composition but may also to some extent be dependent on the assay employed [46]. 97 

Structure-function of DPP-IV inhibitors 98 

Research on DPP-IV inhibitory peptides from food protein sources is relatively novel (< 10 99 

years). Therefore, the number of peptide sequences which have been identified to date is limited 100 

(< 100 peptide sequences) [12, 33]. 101 

Elucidation of the physicochemical characteristics of peptides which are linked to DPP-IV 102 
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inhibition has been attempted. To date, there does not seem to be a consensus for the 103 

physicochemical characteristics of peptides which display relatively potent DPP-IV inhibition 104 

[47]. However, using a peptide alignment strategy, it has been shown that peptides containing a 105 

Trp at the N-terminus and a Pro at position 2 were generally relatively potent DPP-IV inhibitors, 106 

having IC50 values < 200 µM [12]. 107 

Several novel peptide sequences have been identified within food protein hydrolysates using 108 

liquid chromatography mass-spectrometric (LC-MS) analyses generally coupled with bioactivity-109 

driven fractionation approaches [16, 17, 19, 25, 29, 48]. In silico approaches have also allowed 110 

the identification of numerous peptide sequences [14, 34, 49, 50]. In addition, systematic 111 

approaches based on peptide library [51-53] and peptide array [48] technologies have enhanced 112 

DPP-IV inhibitory peptide sequence discovery as they allow rapid screening of hundreds of 113 

peptides. 114 

Mode of action of dietary DPP-IV inhibitory peptides 115 

Different modes of action of DPP-IV inhibitory peptides have been reported. These include 116 

competitive, non-competitive, uncompetitive and mixed-type inhibition [14, 17, 27, 50]. 117 

Knowledge of the mode of action of DPP-IV inhibitory peptides is important in order to 118 

understand their site of interaction with DPP-IV. This information is relevant when studying the 119 

molecular docking of peptides to the active site of DPP-IV [47]. 120 

In addition to the different modes of inhibition, it has been shown that specific peptides could act 121 

as DPP-IV substrates. Well-known examples of substrate inhibitors of DPP-IV are Ile-Pro-Ile and 122 

Val-Pro-Ala [54]. Food protein-derived peptides which are susceptible to DPP-IV cleavage have 123 

been classified as substrate or prodrug type inhibitors. Both substrate and prodrug peptide 124 

inhibitors comprise the typical motifs of DPP-IV substrates, i.e., Xaa-Pro- or Xaa-Ala- (where 125 

Xaa is an amino acid), at their N terminus. The cleavage of substrate inhibitors generally induces 126 

a loss/reduction in their bioactive properties. In contrast, in the case of prodrug inhibitors, DPP-127 
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IV releases a more potent peptide. Interestingly, DPP-IV substrates have been predicted in silico 128 

to be released by the action of gastrointestinal enzymes on milk proteins [55]. In particular, a 129 

prodrug inhibitor, Leu-Pro-Leu-Pro-Leu (-casein (f 135-139), IC50 = 325 µM), was shown to be 130 

cleaved by DPP-IV in vitro, releasing a more potent compound Leu-Pro-Leu (IC50 = 241 µM). 131 

Therefore, the susceptibility of selected peptides to DPP-IV cleavage may have consequences in 132 

vivo, resulting in either a loss or an increase in their bioactive properties. 133 

In vitro studies have evaluated the effect of combining the DPP-IV inhibitory drug Sitagliptin 134 

with DPP-IV inhibitory peptides and a whey protein hydrolysate [26]. Using binary mixtures of 135 

Sitagliptin and dipeptide, together with an isobole approach, an additive effect on DPP-IV 136 

inhibition was shown in most instances [56]. Furthermore, synergistic effects were observed with 137 

Ile-Pro-Ile-Gln-Tyr (-casein (f 26-30)). While these effects have been observed in vitro, they 138 

need to be evaluated in vivo in order to determine if it is possible to combine drugs and food 139 

protein hydrolysates to, for example, restrict the possible side-effects associated with antidiabetic 140 

medicines [for review, see: 1]. 141 

Evidence of antidiabetic effects of food-protein derived DPP-IV inhibitory 142 

peptides in vivo 143 

The in vivo studies reporting the antidiabetic effects of DPP-IV inhibitory food protein 144 

hydrolysates, conducted to date, have been carried out in small animals. To our knowledge, six 145 

animal studies have been carried out to date with zein and meat protein hydrolysates [44], milk 146 

protein-derived peptides and hydrolysates [19, 32] along with gelatin hydrolysates from Atlantic 147 

salmon [39] halibut and tilapia [57] as well as porcine skin [36]. The outcomes of these studies 148 

are summarized in Table 1. All studies demonstrated a reduction in glycaemia. This was linked, 149 

only in certain instances, to an increase in post-prandial insulin level following ingestion of the 150 

hydrolysates [36, 39, 44, 57]. In addition, four animal studies have also demonstrated a reduction 151 
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in plasma DPP-IV activity, which was associated with an increase in the plasma level of active 152 

and/or total GLP-1 [36, 39, 44, 57]. 153 

To date, the study of DPP-IV inhibition by dietary peptides in humans is in its infancy. A number 154 

of studies have analyzed serum DPP-IV activity following nutritional interventions. However, to 155 

our knowledge, none of these studies have demonstrated a reduction in DPP-IV activity as a 156 

consequence of food-protein or hydrolysate consumption [58]. Interestingly, several fragments 157 

from bovine -casein have been reported in the gastrointestinal tract of humans [59], some of 158 

which had previously been described for their in vitro DPP-IV inhibitory properties [60] (Table 159 

2). However, to date, clear evidence for the bioavailability of food protein-derived peptides is 160 

limited [2], making it challenging to study their effects on systemic targets. This reinforces the 161 

relevance of targeting DPP-IV inhibition directly in the gut as opposed to the serum or other 162 

organs. To our knowledge, no study to date has evaluated DPP-IV inhibition directly in the gut of 163 

animals or humans in the context of nutritional interventions. 164 

Conclusions and perspectives 165 

To date, dietary protein hydrolysates with DPP-IV inhibitory properties have mainly been studied 166 

in vitro. A limited number of studies have been performed in vivo, with the majority of the 167 

studies being conducted in small animals. The contribution of DPP-IV inhibition to serum 168 

glucose regulatory effects following dietary protein and hydrolysate ingestion by humans is still 169 

unknown. However, it is likely that DPP-IV inhibition may play a role in the antidiabetic effects 170 

of intact and hydrolysed food proteins in humans. 171 

Analysis of the current literature has allowed identification of several opportunities to further 172 

study the DPP-IV inhibitory potential of food protein hydrolysates. There is a requirement for 173 

human intervention studies to better understand the role of DPP-IV inhibitory peptides in serum 174 

glucose regulation. The interactive effects between food protein-derived peptides in vivo and 175 

antidiabetic drugs is also worthy for future studies. Additional studies on the interaction of 176 
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peptides with secondary binding sites of DPP-IV are warranted as numerous non-competitive 177 

peptide sequences have been found to be relatively potent inhibitors of DPP-IV. Finally, 178 

utilization of in silico approaches may help in the identification of novel food protein sources of 179 

DPP-IV inhibitory peptides. This may allow valorization of underutilized proteins as well as the 180 

development of strategies for the release of potent DPP-IV inhibitory peptides. 181 

182 
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Table captions 

Table 1. Summary of the outcomes of animal studies conducted with food protein-derived 

hydrolysates displaying dipeptidyl peptidase IV (DPP-IV) inhibitory properties. 

 

Table 2. Peptides originating from bovine -casein identified in the jejunum of human 

subjects which display in vitro dipeptidyl peptidase IV (DPP-IV) inhibitory activity. Adapted 

from Boutrou et al. [59]. 
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Table 1 

Compound Study design Biological outcomes Reference 

Zein (ZH) and meat 

protein hydrolysates 

(MPH) 

Animals: 7 week old ♂ Sprague-Dawley rats 

(n=6/group) 

Dose: 2 g kg
-1 

direct ileal
 
administration 

Duration: acute 

 

Antidiabetic effects observed with ZH only but 

not MPH. 

- Increased total & active GLP-1 secretion from 

L cells 

- Reduced plasma DPP-IV activity 

- Increased insulin secretion 

- Reduced glycaemia 

[44] 

-Lactoglobulin 

hydrolysed with trypsin 

Animals: C57BL/6 mice (n=10/group) 

Dose: 300 mg kg
-1

 oral gavage 

Duration: acute 

- Reduced glycaemia following an OGTT [32] 

LPQNIPPL
a
 (-casein (f 

70-77)) 

Animals: 8 week old ♀ Sprague-Dawley 

(n=12/group) 

Dose: 300 mg kg
-1

 oral gavage 

Duration: acute 

- Reduced glycaemia following an OGTT 

- No effect on plasma insulin levels 

 

[19] 

Porcine skin gelatin 

hydrolysed with 

Flavourzyme
TM

 

Animals:8 weeks ♂ Sprague-Dawley 

streptozotocin (STZ)-induced diabetic rats 

(n=12/group) 

Dose: 300 mg day
-1

 oral gavage 

Duration: 42 days 

- Increased active plasma GLP-1 secretion 

- Reduced plasma DPP-IV activity 

- Increased plasma insulin levels 

- Increased plasma glucagon levels 

- Reduced glycaemia following an OGTT 

[36] 

Atlantic salmon skin 

gelatin hydrolysed with 

Flavourzyme
TM

 

Animals: ♂ Sprague-Dawley STZ-induced diabetic 

rats (n=12/group) 

Dose: 300 mg day
-1

 oral gavage 

Duration: 5 weeks 

- Increased total & active plasma GLP-1 

secretion 

- Reduced plasma DPP-IV activity 

- Increased plasma insulin levels 

- Increased insulin:glucagon ratio 

- Reduced glycaemia following an OGTT 

[39] 
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Tilapia (TSGH) and 

halibut (HSGH) skin 

gelatin hydrolysed with 

Flavourzyme
TM

 

Animals: ♂ Sprague-Dawley STZ-induced diabetic 

rats (n=11/group) 

Dose: 750 mg kg
-1

 day
-1

 oral gavage 

Duration: 30 days 

- Increased total plasma GLP-1 secretion with 

TSGH and HSGH 

- Reduced plasma DPP-IV activity with TSGH 

and not HSGH 

- Increased plasma insulin levels, being more 

marked with TSGH than with HSGH 

- Reduced glycaemia following an OGTT, being 

more marked with TSGH than with HSGH 

[57] 

a
peptide sequence with the one letter amino acid code. 

DPP-IV: dipeptidyl peptidase IV; GLP-1: glucagon like peptide 1; HSGH: halibut skin gelatin hydrolysate; MPH: meat protein hydrolysate; OGTT: oral 

glucose tolerance test; STZ: streptozotocin; TSGH: tilapia skin gelatin hydrolysate; ZH: zein hydrolysate; ♀: female; ♂: male. 
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Table 2 

 

Peptide fragment Compound
a
 DPP-IV IC50 value (µM)

b
 Reference

c
 

60-68 YPFPGPIPN 670 [19] 

62-68 FPGPIPN 260 [19] 

70-77 LPQNIPPL 46 [19] 

71-77 PQNIPPL 1500 [19] 

74-82 IPPLTQTPV 1300 [19] 

135-139 LPLPL 325 [50] 

- Sitagliptin 3910
-3

 [56] 
a
The peptide sequences are abbreviated with the one letter amino acid code 

b
IC50: half maximal inhibitory concentration 

c
Bibliographic reference reporting the in vitro IC50 value 
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