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Abstract 23 

The potential of quinoa to act as a source of dipeptidyl peptidase IV (DPP-IV) inhibitory and 24 

antioxidant peptides was studied. A quinoa protein isolate (QPI) with a purity of 40.73 ± 0.90% 25 

was prepared. The QPI was hydrolysed at 50C for 3 h with two enzyme preparations: papain (P) 26 

and a microbial papain-like enzyme (PL) to yield quinoa protein hydrolysates (QPHs). The 27 

hydrolysates were evaluated for their DPP-IV inhibitory and oxygen radical absorbance capacity 28 

(ORAC) activity. Protein hydrolysis was observed in the QPI control, possibly due to the activity 29 

of quinoa endogenous proteinases. The QPI control had significantly higher DPP-IV half 30 

maximal inhibitory concentrations (IC50) and lower ORAC values than QPH-P and QPH-PL (P < 31 

0.05). Both QPH-P and QPH-PL had similar DPP-IV IC50 and ORAC values. QPH-P had a DPP-32 

IV IC50 value of 0.88  0.05 mg mL
-1

 and an ORAC activity of 501.60  77.34 µmol Trolox 33 

equivalent (T.E.) g
-1

. To our understanding, this is the first study demonstrating the in vitro DPP-34 

IV inhibitory properties of quinoa protein hydrolysates. QPHs may have potential as functional 35 

ingredients with serum glucose lowering properties. 36 

 37 

Key words: dipeptidyl peptidase IV inhibition, antioxidant, bioactive peptides, quinoa. 38 

 39 

Abbreviations: AAPH, 2,2’-azobis (2-amidinopropane) dihydrochloride; ACE, angiotensin 40 

converting enzyme; ACN, acetonitrile; AN, free amino group content; ANOVA, analysis of 41 

variance; BCA, bicinchoninic acid ; BSA, bovine serum albumin; DPPH, 2,2-diphenyl-1-42 

picrylhydrazyl; DPP-IV, dipeptidyl peptidase IV; DPP-IV PI, DPP-IV inhibitory potency index; 43 

E:S, enzyme to substrate ratio; GIP, glucose dependent insulinotropic polypeptide; GLP-1, 44 

glucagon-like peptide-1; GP-HPLC, gel permeation high-performance liquid chromatography; 45 

HCl, hydrochloric acid; HPLC, high performance liquid chromatography; IC50, half maximal 46 

inhibitory concentration; NaOH, sodium hydroxide; ORAC, oxygen radical absorbance capacity; 47 
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P, papain; PL, papain-like enzyme; QPH, quinoa protein hydrolysate; QPH-P, QPH obtained with 48 

P; QPH-PL, QPH obtained with the PL; QPI, quinoa protein isolates; RP-HPLC, reverse-phase 49 

high-performance liquid chromatography; RuBisCo, ribulose-1,5-bisphosphate 50 

carboxylase/oxygenase; SD, standard deviation; SDS-PAGE, sodium dodecyl sulphate 51 

polyacrylamide gel electrophoresis; TFA, trifluoroacetic acid; TCA, trichloroacetic acid; T.E., 52 

Trolox equivalent; TNBS, 2,4,6-trinitrobenzenesulfonic acid; TRIS, 53 

tris(hydroxymethyl)aminomethane; T2D, type 2 diabetes. 54 

55 



 

 4 

1. Introduction 56 

Due to the increasing prevalence of diabetes worldwide, the investigation of natural strategies to 57 

slow down the progress of this disease is a subject of interest to the scientific community. It has 58 

been suggested that natural components originating from foods can affect different biomarkers of 59 

type 2 diabetes (T2D). Among these, amino acids, peptides and food-derived proteins have been 60 

shown to affect serum glucose levels in normoglycaemic and T2D subjects (Manders et al., 61 

2014). Although milk proteins appear to be one of the most studied substrates for the generation 62 

of insulinotropic components, selected studies have also demonstrated the benefit of ingesting 63 

plant proteins or plant protein hydrolysates in the regulation of serum glucose in humans (Méric 64 

et al., 2014). The antidiabetic properties of dietary proteins and peptides have been attributed to 65 

their direct insulinotropic properties or to the inhibition of metabolic enzymes such as dipeptidyl 66 

peptidase IV (DPP-IV) or -glucosidase (Lacroix and Li-Chan, 2013; Mojica et al., 2015). 67 

DPP-IV is responsible for the degradation of the incretin hormones such as glucose dependent 68 

insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). Cleavage of the incretins 69 

by DPP-IV leads to a diminution of insulin secretion in pancreatic beta cells, in the post prandial 70 

phase (Juillerat-Jeanneret, 2014). DPP-IV inhibitory drugs, or gliptins, are currently being used 71 

for the treatment of T2D. DPP-IV inhibitors are also naturally found within a wide range of 72 

dietary proteins in the format of peptide fragments as demonstrated in silico (Lacroix and Li-73 

Chan, 2012; Nongonierma and FitzGerald, 2014). These DPP-IV inhibitory peptides may be 74 

released during the enzymatic digestion of food proteins. 75 

A relatively high oxidative status is generally found in individuals suffering from T2D as a 76 

consequence of the onset of secondary diseases including cardiovascular and renal complications 77 

(Hayden and Tyagi, 2001). Several studies have demonstrated that specific peptides from foods 78 

display an antioxidant activity in vitro. This can be seen through the scavenging of free radicals 79 

(Di Pierro et al., 2014; Nongonierma and FitzGerald, 2013) or through the inhibition/activation of 80 
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certain pro- or anti-oxidative metabolic enzymes (Nongonierma and FitzGerald, 2012; O’Keeffe 81 

and FitzGerald, 2014). However, to date, a clear relationship between the consumption of dietary 82 

antioxidants and a reduction of in vivo oxidative status has not been established (Lacroix and Li-83 

Chan, 2014). 84 

Quinoa (Chenopodium quinoa Willd.) is a pseudocereal originating from South America which 85 

has gained increasing interest in other regions of the world over the past number years. This is 86 

linked with its high protein content and a balanced amino acid profile. It has been reported that 87 

quinoa contains higher content of proteins than other dietary grains such as wheat, rice, maize, 88 

oat and barley (González Martín et al., 2014). It is also becoming popular as a gluten-free grain. 89 

Only a restricted number of studies have demonstrated that quinoa potentially contains bioactive 90 

peptides. To date, it appears that quinoa peptides have mainly been studied for their in vitro 91 

angiotensin converting enzyme (ACE) inhibitory and antioxidant properties (Aluko and Monu, 92 

2003). Recently, an in silico study has shown that quinoa proteins contain previously identified 93 

DPP-IV inhibitory peptides. A model was used to rank dietary proteins in terms of their DPP-IV 94 

inhibitory potency index (DPP-IV PI). It was shown that the large ribulose-1,5-bisphosphate 95 

carboxylase/oxygenase (RuBisCO) chain from quinoa had a higher DPP-IV PI (2.44 10
-6 

µM
-1

 g
-

96 

1
) than selected milk proteins such as bovine serum albumin (BSA) and s2-casein (0.93 and 1.93 97 

10
-6 

µM
-1

 g
-1

, respectively) (Nongonierma and FitzGerald, 2014). This suggests that quinoa 98 

protein hydrolysates may have potential as a source of DPP-IV inhibitory peptides. 99 

To our knowledge, no studies to date have shown that quinoa protein hydrolysates contain DPP-100 

IV inhibitory properties. Therefore, the aim of this study was to generate quinoa protein 101 

hydrolysates which could inhibit DPP-IV. This was achieved by preparing a quinoa protein 102 

isolate (QPI). The QPI was hydrolysed with two food-grade enzymatic preparations. The peptide 103 

profiles of the resulting hydrolysates were then analysed. Finally, the samples were tested in vitro 104 

for their DPP-IV inhibitory and also for their antioxidant properties. 105 
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2. Materials and methods 106 

2.1. Reagents 107 

Organic Real quinoa seeds from Priméal (Paugres, France) containing 12.8% (w/w) protein were 108 

purchased in a local store (Limerick, Ireland). Trifluoroacetic acid (TFA), trichloroacetic acid 109 

(TCA), tris(hydroxymethyl)aminomethane (TRIS), azocasein, sodium phosphate monobasic, 110 

sodium phosphate dibasic, Gly-Pro-pNA, Leu, diprotin A (Ile-Pro-Ile), Trolox, 2,2’-azobis (2-111 

amidinopropane) dihydrochloride (AAPH) radical, porcine DPP-IV (≥ 10 U mg
-1

 protein) were 112 

obtained from Sigma Aldrich (Dublin, Ireland). 2,4,6-Trinitrobenzenesulfonic acid (TNBS) was 113 

from Pierce Biotechnology (Medical Supply, Dublin, Ireland). Asp-Glu and Leu-Trp-Met-Arg 114 

were from Bachem (Bubendorf, Switzerland). Hydrochloric acid (HCl), sodium hydroxide 115 

(NaOH), high performance liquid chromatography (HPLC) grade water and acetonitrile (ACN) 116 

were from VWR (Dublin, Ireland). All other chemicals were of analytical grade and obtained 117 

from Sigma Aldrich. 118 

2.2. Quinoa protein isolates (QPI) 119 

QPI was prepared according to the method described by Aluko and Monu (2003) with 120 

modifications. Briefly, the quinoa seeds (300 g) were soaked for 60 min in 900 mL of distilled 121 

water. The quinoa seeds were then rinsed three times with the same volume (900 mL) of distilled 122 

water to remove saponins. The grains were reduced to a puree with an Ultraturrax homogeniser 123 

(IKA, Staufen, Germany) set at 6,500 rpm for 20 min at room temperature (25C). The mixture 124 

was further diluted in distilled water at a 1:1 (w/w) ratio. The pH was adjusted to 9.0 using 0.5 M 125 

NaOH to solubilise the proteins under continuous agitation for 60 min at room temperature. The 126 

sample was then centrifuged (10,000 g, 30 min, 4°C, Sorvall RC-5, Fisher Scientific, Dublin, 127 

Ireland). The supernatant was retained and subsequently adjusted to pH 4.6 with 0.1 N HCl and 128 

then centrifuged (10,000 g, 30 min, 4°C). The proteins collected in the pellet were resuspended in 129 

distilled water (1:1 (w/w)) and adjusted to pH 7.0 with 0.5 M NaOH. The QPI sample was freeze-130 
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dried (FreeZone 18L, Labconco, Kansas City, MO, USA) and stored at -20°C until utilisation. 131 

The protein content of the QPI was determined with the bicinchoninic acid (BCA) method using 132 

a micro BCA protein assay kit (Thermo Scientific, Rockford, IL, USA). Absorbance at 562 nm 133 

was determined using a plate reader (Biotek Synergy HT, Winoosky, VT, USA) controlled by 134 

Gen 5 software (Biotek) and protein content was estimated by reference to a standard curve with 135 

bovine serum albumin (BSA) in the range of 25-2,000 µg mL
-1

. All samples were analysed in 136 

triplicate. The extraction yield (equation 1) and purity (equation 2) of the QPI were calculated as 137 

follows: 138 

100
proteinofmassinitial

QPItheinproteinofmass
Yield    (Equation 1) 139 

100
QPIofmass

QPItheinproteinofmass
Purity    (Equation 2) 140 

2.3. Determination of the general proteinase activity of the enzyme preparations using the 141 

azocasein assay 142 

The azocasein assay was used to determine the general proteolytic activity as described by 143 

Kilcawley et al. (2002). Briefly, the enzyme preparations were diluted at 1 g L
-1

 in 50 mM 144 

phosphate buffer, pH 7.0. A volume of 100 µL of the enzyme solution was incubated at 37C for 145 

30 min with 1 mL of a 0.5% (w/v) azocasein solution in the phosphate buffer. The reaction was 146 

terminated by the addition of 100 µL of 2 M TCA. The samples were then centrifuged at 21,255 147 

g for 5 min (Hettich Universal 320R, Hettich, Tuttlingen, Germany). The supernatant (750 µL) 148 

was mixed with 250 µL of 0.5 M NaOH and the absorbance was determined at 440 nm (UV mini 149 

1240 spectrophotometer, Shimadzu, Kyoto, Japan). 150 

2.4. Enzymatic hydrolysis of the QPI 151 

Hydrolysis was carried out essentially as described by Nongonierma and FitzGerald (2015), with 152 

modifications. The QPI was resuspended in distilled water at 25 g L
-1

 on a protein basis, adjusted 153 

to pH 7.0 with 0.5 M NaOH and allowed to hydrate for 30 min at 50C. Two different enzyme 154 
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preparations were used to hydrolyse the QPI, they consisted of a food-grade proteolytic 155 

preparation from Carica papaya latex (papain, P) and a microbial-derived alternative to papain 156 

(papain-like, PL) both preparations obtained from Biocatalysts (Cefn Coed, Wales, UK). The 157 

enzyme was added at 2% (v/w) enzyme:substrate (E:S) ratio and hydrolysis was performed at 158 

50°C for 180 min. A control sample (QPI control), without enzyme, was maintained in the same 159 

conditions as the reaction sample. The enzymes were heat inactivated in a water bath at 90C for 160 

20 min or 100°C for 40 min for PL and P, respectively. The hydrolysates generated with the 161 

papain (QPH-P) and with the papain-like enzyme (QPH-PL) were freeze-dried and stored at -162 

20°C prior to further analysis. Each hydrolysis reaction was carried out in triplicate (n = 3). 163 

2.5. Dipeptidyl peptidase IV (DPP-IV) inhibition assay 164 

The protein hydrolysates were dispersed in HPLC water at concentrations ranging from 25.5 × 165 

10
-3

 to 2.0 mg mL
-1

 (final concentration in protein equivalents). The DPP-IV inhibition assay was 166 

carried out as described by Nongonierma and FitzGerald (2013). Briefly, the test samples (25μL) 167 

were pipetted onto a 96 well microplate (Sarstedt, Dublin, Ireland) containing Gly-Pro-pNA 168 

(final concentration 0.200 mM). The negative control contained 100 mM Tris-HCl buffer pH 8.0 169 

(25 μL) and Gly-Pro-pNA. The reaction was initiated by the addition of DPP-IV (final 170 

concentration 0.0025 U mL
-1

). All the reagents were diluted in 100 mM Tris-HCl buffer pH 8.0. 171 

Diprotin A was used as a positive control. Each sample was analysed in triplicate. The microplate 172 

was incubated at 37C for 60 min in a microplate reader (Biotek Synergy HT) and absorbance of 173 

the released pNA was monitored at 405 nm. The DPP-IV half maximal inhibitory concentration 174 

(IC50) values were determined by plotting the percentage inhibition as a function of the test 175 

compound concentration expressed in mg protein equivalents mL
-1

. 176 

2.6. Determination of the antioxidant capacity with the oxygen radical absorbance capacity 177 

(ORAC) assay 178 

The samples’ antioxidant capacity was determined using the ORAC assay as per Zulueta et al. 179 
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(2009), with some modifications. Briefly, the samples were dissolved at 0.02 and 0.03 mg protein 180 

equivalents mL
-1

 (final concentration) in 75 mM phosphate buffer pH 7.0. Trolox standard was 181 

prepared as reference at concentrations ranging from 0 to 8 µM (final concentration). Samples or 182 

Trolox (50 µL) were added to 50 µL of fluorescein (final concentration 0.1 µM) in a black 96 183 

well microplate. The plate was incubated for 15 min at 37°C and the reaction was initiated with 184 

the addition of 25 µL of AAPH radical (final concentration 14.63 mM). The fluorescence was 185 

recorded every min for 60 min at excitation and emission wavelengths of 485 and 520 nm, 186 

respectively (Biotek Synergy HT). ORAC activity was expressed as µmol of Trolox equivalents 187 

(T.E.) per g of protein equivalents. Each sample was analysed in triplicate. 188 

2.7. Determination of the free amino group content of the hydrolysates 189 

The free amino group content of the hydrolysates was determined with the method of Adler-190 

Nissen (1986) using TNBS. Absorbance values were measured at 340 nm (UV mini 1240 191 

spectrophotometer) which allowed determination of the free amino group content (AN) using the 192 

following formula: 193 

𝐴𝑁 = 𝐴𝑁2 − 𝐴𝑁1 

With AN1, the amino group content of the unhydrolysed protein isolate (mg N g
-1

 protein) and 194 

AN2, the amino group content of hydrolysed proteins (mg N g
-1

 protein equivalents). 195 

2.8. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) 196 

The QPI and QPH samples were analysed using SDS-PAGE. Mini-PROTEAN TGX precast gels 197 

(4-20% resolving gel, Bio-Rad Laboratories, Hercules, CA, USA) were used on a Mini-PROTAN 198 

Tetra Cell system (Bio-Rad Laboratories) according to the manufacturer’s instructions. Samples 199 

were resuspended in distilled water at a concentration of 8.1 g protein equivalents L
-1

, then mixed 200 

1:1 (v/v) with loading buffer (protein loading buffer blue 2X - National Diagnostics, Atlanta, GA, 201 

USA) under reducing conditions (with β-mercaptoethanol). Proteins were visualized by staining 202 

with Coomassie brilliant blue (0.025% (w/v) in 10% acetic acid) and destained in 40% methanol 203 
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and 10% acetic acid. A wide range molecular weight calibration kit (6,500 to 200,000 Da, Sigma-204 

Aldrich) was used as molecular weight standards. 205 

2.9. Gel permeation (GP-) and reverse-phase high-performance liquid chromatography 206 

(RP-HPLC) 207 

GP-HPLC was used to determine the molecular mass distribution of the peptides within the 208 

hydrolysates as described by Nongonierma and FitzGerald (2012). Samples were resuspended at 209 

0.10% (w protein equivalents/v) in 0.1% TFA and 30% HPLC grade ACN in HPLC grade water. 210 

A 600 × 7.5 mm I.D. TSK G2000 SW column mounted with a 75 × 7.5 mm I.D. TSKGEL SW 211 

guard column (Tosoh Bioscience, Stuttgart, Germany) was used for separation on a HPLC 212 

(Model 1525 binary pump, Model 717 Plus autosampler and a Model 2487 dual λ absorbance 213 

detector interfaced with a Breeze
TM

 data-handling package, Waters, Dublin, Ireland). A 20 µL 214 

sample volume was injected onto the column. The absorbance was monitored at 214 nm. The 215 

standards used to calibrate the GPC consisted of BSA, -lactoglobulin, -lactalbumin, aprotinin, 216 

bacitracin, Leu-Trp-Met-Arg, Asp-Glu and Tyr. 217 

The peptide profiles of different samples were determined as per Nongonierma and FitzGerald 218 

(2012) by RP-HPLC using a 250 × 4.6 mm I.D., 5.0 μm Jupiter C18 column coupled to a C18 219 

guard column (4 × 3 mm I.D., Phenomenex, Cheshire, UK). The absorbance was monitored at 220 

280 and 214 nm. Samples were resuspended at 0.3 % (w protein equivalents/v) in 0.1% TFA in 221 

HPLC water. A 70 µL sample volume was injected onto the column. 222 

2.10. Statistical analysis 223 

Results are presented as the mean of triplicate (n = 3) determinations ± SD. They were compared 224 

using R
®
software 3.1.0 package (R Foundation for Statistical Computing, Vienna, Austria) and 225 

significant differences were verified by ANOVA for means comparison, followed by a post-hoc 226 

Tukey’s test at a significance level P < 0.05. 227 
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3. Results and Discussion 228 

3.1. Characteristics of the QPI 229 

The yield of the QPI was of 9.24 ± 0.16% and the protein purity was of 40.73 ± 0.90%. The 230 

protein content reported in the QPI was lower than previous values reported in the literature, i.e., 231 

65.5 (Aluko and Monu, 2003) and 72.2-83.5% (Abugoch et al., 2008). This may be attributed to 232 

the fact that the extraction was carried out directly on whole quinoa grains herein and not on a 233 

milled quinoa flour, resulting in larger particle size and lower volume:surface ratio, which is 234 

generally associated with a lower mass transfer of solutes during extraction procedures. In 235 

addition, at higher extraction pH (11.0), a higher protein purity was achieved (Abugoch et al., 236 

2008). However, high extraction pHs > 10.0 may be detrimental to the integrity of the quinoa 237 

proteins, causing for instance denaturation, aggregation and dissociation of the native proteins 238 

(Valenzuela et al., 2013). For this reason, a less denaturing pH value of 9.0 was used to obtain the 239 

QPI herein, even though the purity and yield were relatively low. Compositional analysis of 240 

quinoa seed flour has shown that it contains relatively large amounts of carbohydrates, i.e., up to 241 

74% (w/w) (Chauhan et al., 1992). It is likely that besides the proteins, the other components 242 

within the QPI obtained herein are mostly composed of carbohydrates. 243 

The protein profile of the QPI was determined by SDS-PAGE in reducing conditions (Fig. 1A). 244 

Different protein bands were found ranging from < 6.5 to ~ 100 kDa. This is in agreement with 245 

previous studies which detected bands ranging from between 8.8 to 72.0 kDa (Valenzuela et al., 246 

2013) and between 8 to 92 kDa (Brinegar and Goundan, 1993) using non-reducing SDS-PAGE 247 

for quinoa protein extracts. Brinegar and Goundan (1993) have shown that the total extractable 248 

proteins from quinoa at pH 8.0 ranged from 8-100 kDa, which suggested that the QPI herein 249 

contained all the major quinoa proteins. It has been reported that polypeptides between 8-9 kDa 250 

correspond to 2S-type proteins commonly found in a wide range of seeds. Protein bands eluting 251 

between 22-23 and 32-39 kDa have previously been reported as Chenopodin subunit A and B, 252 
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respectively (Brinegar and Goundan, 1993). Chenopodins, which represent the major quinoa 253 

proteins, are storage proteins belonging to the globulin family. Protein bands eluting at 55 kDa 254 

have previously also been identified as globulins (Valenzuela et al., 2013). 255 

3.2. Physicochemical characteristics of the QPI and QPHs 256 

The concentration of free amino groups in the QPI control was higher (P < 0.05) than that of the 257 

non-heated QPI sample (Table 1). Similar SDS-PAGE profiles were observed for the QPI and 258 

QPI control (Fig. 1A), although the QPI control profile displayed bands of lower intensity. The 259 

QPI control also had different characteristics compared to the QPI, notably in terms of peptide 260 

profile (Fig. 2A) and molecular mass distribution (Fig. 2B). Within the first 30 min of the ACN 261 

gradient, more intense peptides peaks were seen in the QPI control as compared to the QPI (Fig. 262 

2A). Peaks seen in the QPI control profile eluted at similar retention times as those found within 263 

the QPHs. The proportion of material > 10 kDa decreased from 61 to 34% in the QPI vs. QPI 264 

control. This resulted in an increase in components < 1 kDa from 20 to 38% in the QPI vs. QPI 265 

control (Fig. 2B). These results showed that a significant level of protein hydrolysis occurred 266 

when the QPI was incubated at 50C for 180 min (QPI control). It has previously been reported 267 

that quinoa grains contain various proteinases (cysteine, aspartic, serine and metallo-proteases), 268 

which are active between pH 3.0-6.5. It was shown that these proteinases were responsible for 269 

quinoa protein breakdown after 24 h incubation (Mäkinen et al., 2014). These results are 270 

consistent with the degradation of quinoa proteins seen in the QPI control (Table 1, Fig. 1 and 271 

Fig. 2). The azocasein assay was used to measure the endogenous proteolytic activity of the QPI 272 

after the 180 min incubation at 50C, however, no activity was found (data not shown). This may 273 

be related to the lack of sensitivity of the azocasein test. 274 

The hydrolysates had a significantly higher concentration of free amino groups than that of the 275 

QPI and the QPI control (P < 0.05, Table 1). This indicated that quinoa proteins were further 276 

hydrolysed as a consequence of the hydrolytic activity of the enzyme preparations. There was no 277 

significant difference (P > 0.05) in the free amino group concentration for the QPH-P and QPH-278 
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PL (7.95 ± 0.70 and 8.55 ± 0.88 mg N g
-1

, respectively). Protein hydrolysis in QPH-P and QPH-279 

PL was also seen on the SDS-PAGE profiles (Fig. 1B). The bands corresponding to the intact 280 

proteins were fainter for the hydrolysate profiles as compared to that of the QPI. In addition, 281 

QPH-P presented fainter bands between 20-24 kDa and a longer smear in the low molecular mass 282 

range than QPH-PL (Fig. 1B). Protein breakdown in the QPHs was further confirmed by the 283 

molecular mass distribution profile of these samples, showing a reduction in the higher molecular 284 

mass (> 10 kDa) components in both QPH-P and QPH-PL (Fig. 2B) as compared to QPI. The 285 

peptide profiles for both hydrolysates were very similar even though they were generated with 286 

two different enzyme preparations. Interestingly, both preparations differed in their proteolytic 287 

activity, which was reflected by significant differences (P < 0.05) in the azocasein activity of 288 

0.076  0.004 and 0.403  0.005 Abs mg
-1

 protein min
-1

 for P and PL, respectively. However, the 289 

RP-HPLC of the hydrolysates indicated that both enzyme preparations yielded hydrolysates 290 

which had a similar peptide profile (Fig. 2A). 291 

3.3. DPP-IV inhibitory and ORAC activity of the QPI and QPHs 292 

The IC50 values for QPH-P and QPH-PL were significantly lower (P < 0.05) than that of the QPI 293 

control. In addition, no significant difference was seen between the two hydrolysates. The QPH-P 294 

had an IC50 value of 0.88 ± 0.05 mg mL
-1

. Many studies have reported the in vitro DPP-IV 295 

inhibitory activity of food protein hydrolysates, especially milk protein hydrolysates (Lacroix and 296 

Li-Chan, 2013; Nongonierma and FitzGerald, 2013). However, to date, a limited number of 297 

studies have shown that selected plant proteins hydrolysates display DPP-IV inhibitory properties 298 

in vitro (Hatanaka et al., 2012; Mojica et al., 2015; Nongonierma and FitzGerald, 2015). To our 299 

knowledge, this is the first time that quinoa hydrolysates are reported for their DPP-IV inhibitory 300 

properties. The QPI and QPHs herein had IC50 values of the same order of those previously 301 

reported for grain protein hydrolysates. The DPP-IV IC50 values for other plant protein 302 

hydrolysates described in previous studies ranged from 0.09 to 26.4 ± 2.3 mg mL
-1

, for example, 303 

for a simulated gastrointestinal digest of navy beans and a rice protein hydrolysate generated with 304 
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Bioprase SP, respectively (Hatanaka et al., 2012; Mojica et al., 2015). 305 

The antioxidant capacity of the samples obtained using the ORAC assay is summarised in Table 306 

1. The antioxidant capacity of the QPHs was significantly higher (P < 0.05) than that of the QPI 307 

control. The ORAC values for QPH-P and QPH-PL (501.60  77.34 and 514.36  77.34 µmol 308 

T.E. g
-1

, respectively) were not significantly different (P > 0.05). The antioxidant capacity 309 

reported herein was of the same order as in previous studies with other food protein hydrolysates. 310 

ORAC values of 180 and 468 ± 25 µmol T.E. g
-1

 for a sodium caseinate and a -lactoglobulin 311 

hydrolysate, respectively, have been reported (Di Pierro et al., 2014; Power et al., 2014). To our 312 

knowledge, only one other study has shown that quinoa protein hydrolysates contain antioxidant 313 

peptides which are able to scavenge radical species (Aluko and Monu, 2003). In contrast with the 314 

study from Aluko and Monu (2003), where the radical scavenging was seen only after 315 

fractionation by ultrafiltration, the unfractionated QPH’s herein had antioxidant activity. 316 

However, different antioxidant assays (2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging vs. 317 

ORAC activity) and enzyme preparations (Alcalase vs. P and PL) have been employed in both 318 

studies and therefore the results cannot be directly compared. It has been shown that quinoa 319 

peptides with a lower molecular mass had a higher DPPH radical scavenging activity than those 320 

with a higher molecular mass (Aluko and Monu, 2003). This result is in agreement with our study 321 

showing that the QPHs which had a higher content of lower molecular mass components than the 322 

QPI control also had a higher ORAC capacity. 323 

The identity of the peptides within the QPHs which are responsible for both the DPP-IV 324 

inhibitory and the ORAC activity were not investigated herein. Different peptide sequences have 325 

been identified to date within food protein hydrolysates having DPP-IV inhibitory (Hatanaka et 326 

al., 2012) and antioxidant activity (Di Pierro et al., 2014; Power et al., 2014). For DPP-IV 327 

inhibition, a peptide alignment strategy has recently shown that a Trp at the N-terminus and/or a 328 

Pro at position 2 of the peptide were generally found within the sequence of relatively potent 329 

DPP-IV inhibitory peptides with an IC50 value < 200 µM (Nongonierma and FitzGerald, 2014). 330 
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This was further supported by a positive correlation between the presence of Trp-containing 331 

peptides within plant (hemp, pea, rice and soy) protein hydrolysates and their DPP-IV inhibitory 332 

properties (Nongonierma and FitzGerald, 2015). Antioxidant activity has been described with 333 

short peptides (< 11 amino acids) containing hydrophobic residues such as Pro, His, Tyr and Trp 334 

or sulphur (Cys and Met) residues (Pihlanto, 2006). Papain is a serine proteinase displaying a 335 

relatively broad substrate specificity, which has notably been reported to hydrolyse at the C 336 

terminal side of Lys, Arg and Phe residues (Nongonierma and FitzGerald, 2011). The enzyme 337 

specificity of PL is not known. It is therefore difficult to predict the type of peptides which are 338 

likely to be released by this enzyme preparation. The amino acid percentage of Pro (0.84-2.74% 339 

(w/w)), Trp (0.69-1.71% (w/w)), His (0.63-3.08% (w/w)), Tyr (0.53-1.87% (w/w)), Cys (0.05-340 

0.82% (w/w)) and Met (0.05-4.48% (w/w)) have been determined in quinoa seeds of different 341 

genotypes (Escuredo et al., 2014). Based on the amino acid composition of quinoa, it can be 342 

suggested that Pro-, Trp-, His-, Tyr- and sulfur-containing peptides are likely to be released 343 

following enzymatic hydrolysis of the QPI. These peptides may have contributed to the overall 344 

DPP-IV inhibition and antioxidant activity of the hydrolysates herein. 345 

Although several studies have hypothesized the positive role of dietary antioxidant peptides in 346 

improving biomarkers linked with enhanced sports performance (Lollo et al., 2014), the in vivo 347 

antioxidant mechanisms have not been fully elucidated (Lacroix and Li-Chan, 2014). Only two 348 

studies to date have demonstrated that porcine and Atlantic salmon skin gelatin hydrolysates were 349 

able to inhibit plasma DPP-IV in rats and therefore lower serum glucose in the post-prandial 350 

phase (Hsieh et al., 2015; Huang et al., 2014). 351 

Conclusion 352 

The antioxidant capacity and DPP-IV inhibitory properties of QPHs were demonstrated herein. 353 

Although the QPI control was degraded to lower molecular mass peptides, possibly by 354 

endogenous enzymes (Mäkinen et al., 2014), this resulted in less potent antioxidant and DPP-IV 355 
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inhibitory peptides than those found within the QPHs. The ORAC activity of the QPHs was 356 

approximately twice as high as that of QPI control. This demonstrated the benefits of utilizing 357 

exogenous enzyme preparations to release bioactive peptides from quinoa proteins. Despite 358 

physicochemical differences, the bioactivity of the QPHs generated with papain and microbial-359 

derived papain-like enzyme preparations was similar. Further characterization of the peptide 360 

composition of the QPHs could help to better understand which peptide sequences within both 361 

hydrolysates are responsible for the DPP-IV inhibition and ORAC activity seen therein. In 362 

addition, assessment of these hydrolysates in humans is needed to verify that these bioactive 363 

properties also translate in vivo. 364 

365 
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Table captions 

Table 1. Concentration of free amino groups, half maximal inhibitory concentration (IC50) 

for dipeptidyl peptidase IV (DPP-IV) and oxygen radical absorbance capacity (ORAC) of the 

quinoa protein isolates after 180 min incubation at 50C and heat treatment (QPI control) and 

of the QPI hydrolysed with papain (QPH-P) and the papain-like enzyme (QPH-PL). All 

values are expressed in protein equivalents. Values represent the mean ± SD of three 

replicates (n = 3). For each assay, values with different superscript letters are significantly 

different (P < 0.05). 
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Table 1 

Sample Concentration of free 

amino groups (mg N g
-1

) 

DPP-IV IC50 

(mg mL
-1

) 

ORAC activity 

(µmol T.E. g
-1

)
*
 

QPI control 5.98 ± 0.83
a
 > 2.00 264.42 ± 65.31

a
 

QPH-P 7.95 ± 0.70
b
 0.88± 0.05

a
 501.60 ± 77.34

b
 

QPH-PL 8.55 ± 0.88
b
 0.98 ± 0.04

a
 514.36 ± 77.34

b
 

 

*
T.E.: Trolox equivalent; Samples were tested at 0.030 mg protein equivalents mL

-1
. 
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Figure captions 

 

Figure 1. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) profiles 

of the quinoa protein isolates (QPI) before and after 180 min incubation at 50C and heat 

treatment (QPI control) and of the QPI hydrolysed with papain (QPH-P) and the papain-like 

enzyme (QPH-PL). 

 

Figure 2. (A) Reverse-phase high performance liquid chromatographic (RP-HPLC) profile of 

the quinoa protein isolates (QPI) before and after 180 min at 50C incubation and heat 

treatment (QPI control) and of the QPI hydrolysed with papain (QPH-P) and the papain-like 

enzyme (QPH-PL) and (B) Molecular mass distribution determined by gel permeation high-

performance liquid chromatography (GP-HPLC) of QPI, QPI control, QPH-P and QPH-PL. 

Values represent the mean ± SD of three replicates (n = 3). Bovine serum albumin (BSA), -

lactoglobulin, -lactalbumin, aprotinin, bacitracin, Leu-Trp-Met-Arg, Asp-Glu and Tyr were 

used as standards for the GP-HPLC. 
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