University of Limerick
Browse
- No file added yet -

Rapid microwave assisted synthesis and characterisation of a semiconducting polymer with pKa tuneable degradation properties

Download (1006.25 kB)
journal contribution
posted on 2019-03-04, 12:52 authored by Maria M. Heffernan, Emmet J. O'Reilly
As part of ongoing efforts to develop electroactive polymers (EAPs) which are biodegradable/bioresorbable, we report on the microwave assisted synthesis and characterization of an electrically conducting and electroactive polymer that capitalises on pKa sensitivity to initiate the system’s fracture and breakdown. The system, poly(bis((thiophen-2-yl) methylene) benzene-1,4-diamine), a poly(thiophene-azomethine) co-polymer (PAZO), incorporates hydrolytically sensitive azomethine linkers amongst bithiophene units resulting in one continuously conjugated and redox-active macromolecular framework. Rapid microwave assisted synthesis allowed for facile preparation of the polymer with significantly reduced reaction times when compared to traditional synthetic routes. Electrochemical analysis indicated quasi-reversible electrochemical behaviour with sufficiently high conductivity for in vivo biomedical applications. The polymer displays tunable degradation behaviour whereby the time duration required for polymeric breakdown is a function of the pKa of the acid used to catalyse the reaction resulting in controllable degradation times ranging from 1 h to 6 months. The development of conductive polymeric materials that are fully degradable over pre-defined time periods opens up a portal to the next generation of EAPs for in vivo biomedical applications.

History

Publication

European Polymer Journal;114, pp. 206-212

Publisher

Elsevier

Note

peer-reviewed

Rights

This is the author’s version of a work that was accepted for publication in European Polymer Journal. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in European Polymer Journal, 2019, 114, pp. 206-212, https://doi.org/10.1016/j.eurpolymj.2019.02.005

Language

English

Usage metrics

    University of Limerick

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC