University of Limerick
Browse

Recent advancements and clinical aspects of engineered iron oxide nanoplatforms for magnetic hyperthermia-induced cancer therapy

Download (20.37 MB)
journal contribution
posted on 2024-12-02, 11:28 authored by Arunima Rajan, Suvra S. Laha, Niroj Kumar Sahu, Nanasaheb ThoratNanasaheb Thorat

The pervasiveness of cancer is a global health concern posing a major threat in terms of mortality and incidence rates. Magnetic hyperthermia (MHT) employing biocompatible magnetic nanoparticles (MNPs) ensuring selective attachment to target sites, better colloidal stability and conserving nearby healthy tissues has garnered widespread acceptance as a promising clinical treatment for cancer cell death. In this direction, multifunctional iron oxide nanoparticles (IONPs) are of significant interest for improved cancer care due to finite size effect associated with inherent magnetic properties. This review offers a comprehensive perception of IONPs-mediated MHT from fundamentals to clinical translation, by elucidating the underlying mechanism of heat generation and the related influential factors. Biological mechanisms underlying MHT-mediated cancer cell death such as reactive oxygen species generation and lysosomal membrane permeabilization have been discussed in this review. Recent advances in biological interactions (in vitro and in vivo) of IONPs and their translation to clinical MHT applications are briefed. New frontiers and prospects of promising combination cancer therapies such as MHT with photothermal therapy, cancer starvation therapy and sonodynamic therapy are presented in detail. Finally, this review concludes by addressing current crucial challenges and proposing possible solutions to achieve clinical success.

History

Publication

Materials Today Bio 29, 101348

Publisher

Elsevier

Also affiliated with

  • Bernal Institute

Department or School

  • Physics

Usage metrics

    University of Limerick

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC