University of Limerick
Browse
- No file added yet -

Secrecy performance analysis of a cognitive network for IoT over k-μ channels

Download (1.01 MB)
journal contribution
posted on 2021-09-24, 11:42 authored by Junxia Li, Hui Zhao, Michael JohnsonMichael Johnson
With the development of Internet of Things (IoTs), devices are now connecting and communicating together on a heretofore unheard-of scale, forming huge heterogeneous networks of mobile IoT-enabled devices. For beyond 5G- (B5G-) enabled networks, this raises concerns in terms of spectral resource allocation and associated security. Cognitive radio is one effective solution to such a spectrum sharing issue which can be adopted to these B5G networks, which works on the principle of sharing spectrum between primary and secondary users. In this paper, we develop the confidentiality of cognitive radio network (CRNs) for IoT over k-μ fading channels, with the information transmitted between secondary networks with multiple cooperative eavesdroppers, under the constraint of the maximum interference that the primary users can tolerate. All considered facilities use a single-antenna receiver. Of particular interest, the minimum limit values of secure outage probability (SOP) and the probability of strictly positive secrecy capacity (SPSC) are developed for this model in a concise form. Finally, the Monte Carlo simulations for the system are provided to support the theoretical analysis presented

History

Publication

Wireless Communications and Mobile Computing; Article ID 5548428

Publisher

Hindawi

Note

peer-reviewed

Language

English

Usage metrics

    University of Limerick

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC