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ABSTRACT: Fabrication of hybrid membranes composed of porous materials embedded in polymer matrices is a subject of 
topical interest. Herein, we introduce a new class of hybrid membranes: hypercrosslinked metal-organic polyhedra (HCMOPs). 
These membranes are based upon soluble MOPs that can serve as high-connectivity nodes in hypercrosslinked polymer networks. 
HCMOPs spontaneously form macro-scale, defect-free, freestanding membranes and, thanks to the covalent cross-linking of MOPs, 
the resulting membranes possess multiple functionalities: strong water permeability; self-healing ability; antimicrobial activity; 
better separation and mechanical performance than pristine polyimine membranes. This study introduces a new concept for the 
design and fabrication of multi-functional membranes and also broadens the applications of MOPs.

INTRODUCTION
Membrane technologies can offer the advantages of easy-

operation, low-cost and energy efficiency. It is therefore 
unsurprising that they have found widespread application in 
industrial processes including gas/liquid separation,1,2 
wastewater treatment,3,4 biotechnology,5 food engineering6 and 
ion conduction.7 Traditional polymer membranes tend to 
suffer limitations because of weak mechanical properties, the 
usual permeability-selectivity trade-off and their limited 
functionality.8-10 Endowing membranes with multiple 
functionalities to improve membrane performance is a primary 
objective of the field.11 For instance, self-healing ability will 
improve membrane durability against chemical or physical 
damages;12-13 antibacterial properties will address biofouling 
by treating bacteria in water treatment.14

Incorporating fillers with multi-functionalities and intrinsic 
porosity into polymer matrices to fabricate mixed-matrix 
membranes (MMMs) can address some of the limitations of 
traditional polymer membranes.10,15 However, MMMs are 
typically fabricated by adding insoluble solid fillers such as 
zeolites, metal–organic frameworks (MOFs)16 and covalent 
organic frameworks (COFs)17 and tend to suffer from 
interfacial defects because of poor compatibility between 

fillers and polymer matrix. This often causes agglomeration 
and precipitation of fillers during membrane formation and 
leads to poor membrane performance.18,19 Exploring new 
membrane fabrication techniques and fillers that can supersede 
traditional porous materials is therefore an attractive 
proposition. 

As the subunits (i.e. supermolecular building blocks) of 
MOFs, metal–organic polyhedra (MOPs) inherit certain 
features of MOFs such as ordered structure,20,21 tunable pore 
sizes,22,23 high porosity,24 good stability25,26 and designable 
functionality.27-32 More importantly, MOPs can offer excellent 
processability arising from their high solubility33-35 in certain 
solvents.36 This in turn enables facile post-synthetic 
modification of MOPs to promote interactions with other 
materials such as polymers.37-41 However, until now, only few 
approach (i.e. MMMs or photopolymerization) have been used 
to incorporate MOPs into polymers in order to fabricate hybrid 
membranes (Figure S1).42-45 Unfortunately, these hybrid 
membranes may still suffer from leaching of MOPs, poor 
mechanical properties and limited functionality. Herein, we 
address these issues by introducing a new concept: 
hypercrosslinked MOPs (HCMOPs). We report herein that 
soluble MOPs can serve as co-monomers to produce macro-
scale, defect-free, freestanding HCMOP membranes with self-
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healing ability, antibacterial activity and outstanding 
mechanical and separation performance (Scheme 1). This new 
generation of hybrid MOP membranes offers the potential to 
address the limits of the current generation of MOP-based 
MMMs.

RESULTS AND DISCUSSION
Design and synthesis of soluble MOPs with polymerizable 

groups (e.g. –NH2, -CH=CH2) and selecting appropriate 
crosslinking polymer matrixes are key to fabricating HCMOP 
membranes. Highly stable zirconium-based MOPs have 
attracted increasing attention due to their porosity, 
functionality, outstanding stability and good solubility.25 Zr-
MOPs can easily adjust their pore size via changing the linker 
ligand length while retaining the same skeleton. Moreover, 
functional groups such as amino and vinyl moieties can be 
readily introduced into Zr-MOPs.46-48 After having been 
functionalized with polymerizable groups, Zr-MOPs are 
suitable to serve as high-connectivity nodes. Polyimines are 
mechanically tough cross-linking polymers which form 
freestanding membranes under ambient conditions.49  The 
reversible nature of imine bonds means that polyimines can 
possess outstanding performance such as reshaping, self-
healing and antimicrobial performance.50-51 Herein, we detail 
how HCMOPs can be formed using Zr-MOPs with six amino 
groups that polymerize with aldehydes to form polyimine-
MOP hybrid materials (Scheme 1). 

Scheme 1. The strategy introduced herein fabricates 
HCMOP membranes via introducing functionalized MOPs 
as porous co-monomers.

The MOP used herein, MOP-1, was synthesized according 
to the literature procedure by reaction of zirconium (IV) with 
2-aminoterephthalic acid (H2BDC-NH2).46 Powder X-ray 
diffraction (PXRD) analyses (Figure S2) verified the bulk 
purity of as-synthesized MOP-1. In MOP-1, four trinuclear Zr 
clusters serve as 3-connected vertexes that are linked by BDC-
NH2 to form a tetrahedral cage with accessible inner space for 
guest molecules (Figure 2A and S3).47 Notably, MOP-1 
exhibits high solubility in methanol (~3.3 mg/mL) (Table S2). 
MOP-1 in methanol was studied by 1H NMR (Figure S4) and 
ultra performance liquid chromatography-quadrupole mass 
spectrometry (UPLC-Q-TOF-MS), which confirmed the 
presence of intact cationic tetrahedral cages in methanol. It is 
consistent with the literature that the peaks (m/z of 938.2015, 
1250.6029 and 1874.3933) with continuous charge states from 

+2 to +4 correspond to [M-6Cl-2H]4+, [M-6Cl-3H]3+, and [M-
6Cl-4H]2+ ions, respectively (Figure S5).25 In addition, the 
experimental isotopic distribution patterns of each charge state 
are in good agreement with the theoretically calculated values 
based on the chemical composition of MOP-1.25 Moreover, 
UPLC-Q-TOF-MS analysis proved that MOP-1 was intact in 
dissolution/precipitation recycling experiments (Figure S6).

As shown in Scheme 1, a multi-component condensation 
reaction was employed to prepare HCMOPs via ambient 
polymerization of diethylene triamine, tris(2-
aminoethyl)amine, terephthaldehyde and MOP-1 in mixed 
organic solvents (1:1:8, v/v/v, CH2Cl2/EtOAc/MeOH) at room 
temperature (Figure 1A). Diethylene triamine, tris(2-
aminoethyl)amine and MOP-1 can serve as 2-, 3- and 6- 
connected nodes, respectively, to react with terephthaldehyde 
to generate hypercrosslinked networks linked with imine 
bonds. After allowing the volatiles to evaporate slowly, a 
series of HCMOP-1 variants (a = 0.1, b = 0.2, c = 0.4, 
representing the different weight ratios of MOP-
1/terephthaldehyde) membranes were obtained by varying 
MOP-1 content (Figure S7). When the weight ratio of MOP 
and terephthaldehyde was below 0.4, uniform, transparent, 
highly flexible, freestanding HCMOP-1 membranes were 
formed, but when the MOP was in excess, nonuniform 
membranes with rough surfaces formed. It is possible that the 
MOPs reacted with terephthaldehyde to form crosslinked 
MOPs or discrete species which hindered embedding with the 
polyimine (Figure S8). We determined that HCMOP-1 
membranes offer outstanding mechanical performance. The 
dry HCMOP-1 membrane can be repeatedly bent, twisted or 
stretched without damage and lift a steel object >200 g (Figure 
1B; Videos S1 and S2). Wet HCMOP-1 membranes were 
found to be softer and more flexible and could be elongated by 
a factor of ~0.24. Moreover, HCMOP-1 membranes 
possessed excellent reshaping ability derived from the water-
induced malleability.49 A dry membrane was immersed into 
water for 3 h to generate a wet, pliable membrane which can 
be easily reshaped (Figure 1C). After drying, HCMOP-1 
membrane maintained its new shape and exhibited good 
mechanical properties (e.g. support a steel object >200 g 
without significant flexure).

Figure 1. (A) The process to produce HCMOP-1 membranes. 
(B) Mechanical performance of an HCMOP-1 membrane. (C) 
Demonstration of the reshaping ability of an HCMOP-1 
membrane.
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FT-IR was used to validate the formation of the imine 
backbone in the copolymerization reaction of HCMOP-1 
(Figure S9-S12). After copolymerization, a new absorption 
band at 1640 cm-1 corresponding to the C=N stretch of imine 
bond became prominent in the FT-IR spectra, while the C=O 
stretch absorption band at 1683 cm-1 for the aldehyde was 
barely detectable. These results support that condensation of 
aldehyde groups to form imine linkers occurred during 
polymerization. In order to confirm covalent bonding between 
MOP-1 and the polyimine matrix, MOP-1 was reacted with 
benzaldehyde in the same synthesis condition as HCMOP-1. 
1H NMR data confirmed reaction of MOP-1 with aldehyde as 
indicated by the appearance of new peaks of 7.3~7.5 ppm 
(Figure S13). The UPLC-Q-TOF-MS results provide support 
for MOP-1 being decorated with six phenylmethanimine 
groups (peaks at m/z of 938.2015, 1250.6029 and 1874.3933) 
with charge states from +2 to +4 corresponding to [M-6Cl-
2H]4+, [M-6Cl-3H]3+, and [M-6Cl-4H]2+ ions, respectively 
(Figure S14).

Additionally, we designed and synthesized a 
MOPs@polymer variant by adding an isostructural MOP, 
MOP-1' (terephthalate linkers)47 (Figure 2A, S15 and S16) 
during the synthesis procedure used for HCMOP-1. Although 
MOP-1' also exhibits good solubility in methanol, it cannot 
form covalent bonds with polyimine due to the lack of reactive 
groups (i.e. amino) and therefore leaches out in certain 
solvents. Leaching experiments were conducted via soaking 
HCMOP-1 and MOP-1'@polyimine in water with sonication 
for 2 hours. Inductively coupled plasma mass spectrometry 
(ICP-MS) was used to test whether or not the MOPs had 
leached out from the membranes. The Zr concentration was 
determined to be 0.048 μg/mL for MOP-1'@polyimine 
whereas <0.001 μg/mL was detected for HCMOP-1. These 
results demonstrate an advantage of HCMOPs vs. traditional 
MMMs.

The uniformity and quality of HCMOP membranes were 
evaluated by scanning electron microscopy (SEM) and 
energy-dispersive x-ray (EDX). SEM images (Figure 2B and 
S17) revealed that the HCMOP membranes possess smooth 
surfaces and compact packing without defects on the surface 
and cross-sections. EDX analysis and mapping (Figure 2C, 
S18 and S19) revealed that MOP-1 was homogenously 
dispersed throughout the membranes as indicated by Zr 
distribution. The thickness of HCMOP membranes was 
conveniently adjusted via changing the reactant amount. 

We next demonstrated that the HCMOP approach can be 
applied using other MOPs. 3,3'-diamino-1,1'-biphenyl-4,4'-
dicarboxylic acid (H2BPDC-NH2) was employed to replace 
H2BDC-NH2 and afford a new MOP, MOP-2' (Figure S20 and 
S21). The solubility of MOP-2' in methanol is lower (0.8 
mg/mL) and this affected its utility to fabricate uniform 
HCMOP membranes. In order to improve its solubility, bis(n-
butylcyclopentadienyl)zirconium dichloride was used instead 
of bis(cyclopentadienyl)zirconium dichloride to afford MOP-
2 (Figure S22). The alkyl chains significantly increase 
solubility (36.8 mg/mL of MOP-2 in methanol). Single-crystal 
X-ray diffraction analysis revealed that MOP-2 and MOP-2' 
are the expected isoreticular analogues of MOP-1 (Figure 2A 
and Table S1). 1H NMR and UPLC-Q-TOF-MS revealed the 
presence of intact MOP-2 cations in methanol (Figure S23 
and S24). UPLC-Q-TOF-MS analysis indicated that MOP-2 

was intact in dissolution/precipitation recycling experiments 
(Figure S25). A series of HCMOP-2 membranes were then 
fabricated (Figure S7) under the procedure used for HCMOP-
1. SEM images demonstrated the uniform and defect-free 
surface of HCMOP-2 (Figure S17). EDX analysis and 
mapping revealed the existence of uniformly dispersed MOP-
2 in the resulting membrane (Figure S18 and S19). 

Figure 2. (A) Crystal structures of Zr-MOPs. Color code: C, 
gray; O, red; N, blue; Zr, green. The free spaces in the 
structure were depicted as the inserted pink sphere. For clarity, 
H atoms were omitted. (B) Top view (left) and cross-section 
(right) SEM images of the freestanding HCMOP-1c 
membranes. (C) EDX mapping of HCMOP-1c. 

Functionality such as self-healing ability and antimicrobial 
properties will greatly enhance a membrane’s performance and 
potential applications in industry.12-14 Firstly, in order to prove 
if our HCMOP membranes possess self-healing ability 
attributed to the dynamic nature of imine/amine exchange 
reactions (Figure S26),52 HCMOP membranes were cut with a 
1.8 mm scratch by a surgical blade at room temperature. After 
the membranes with cracks were placed into a 60 oC oven for 
5 hours, the resulting cracks were healed without melting 
(Figure 3A and S27). This self-healing behavior can be 
ascribed to the polymer chain movement and imine/amine 
exchange reaction resulting from the reversible nature of imine 
bonds.50 Meanwhile, stress–strain experiments revealed that 
HCMOP membranes recovered their mechanical performance 
after self-healing (Figure S28). These results indicate that 
HCMOPs represent the first examples of self-healing polymer-
MOP hybrid membranes. Antimicrobial activity of HCMOPs 
can be attributed to the interaction between the electronegative 
charges on the microbial cell surface and protonated amino 
groups from unreacted amino groups and decomposition of 
imine bonds.53 As reported in the literature, this electrostatic 
interaction leads to internal osmotic imbalances, and also 
results in the leakage of intracellular electrolytes and other low 
molecular weight proteinaceous constituents, which 
consequently inhibits the growth of the microorganisms.54 
Two bacteria (Staphylococcus aureus (S. aureus) and 
Escherichia coli (E. coli)) and two fungi (Cryptococcus 
neoformans (C. neoformans) and Saccharomyces cerevisiae (S. 
cerevisiae)) were selected to evaluate antimicrobial activity. 
We found that all HCMOP membranes possess good 
antimicrobial activity, especially for fungus, as indicated by 
the inhibition zone (Figure 3B, S29, S30 and Table S3) and 
minimum inhibitory concentrations (MICs) (Table S4). 
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We also found that the flux of the HCMOP membranes was 
150 L h-1 m-2 bar-1 (Table S5), significantly higher than that of 
commercial polymeric membranes (typically in the range of 
10-50 L h-1 m-2 bar-1).55,56 Thus, HCMOP membranes could be 
suitable for treating pathogens from contaminated water. S. 
aureus and C. neoformans (1.0×107 CFU/mL) were selected as 
representative bacteria and fungus. No pathogen colonies 
formed on the plate after filtering through the HCMOP 
membrane (Figure S31) for >15 cycles, indicative of excellent 
pathogen separation efficiency and reusability (Figure S32). 
Moreover, HCMOP membranes not only removed pathogens 
but they also possessed good durability resulted from their 
self-healing ability. As demonstrated in Figure 3C, the 
damaged membrane fully recovers its separation performance 
after seal-healing. These results indicate that HCMOP 
membranes have potential to treat pathogen contamination in 
water resources. 

Figure 3. (A) Optical microscopy images of the self-healing 
process of damaged HCMOP-1c membrane. (B) The 
inhibition zone of polyimine and HCMOP-1 against C. 
neoformans. (C) The filtration experiment of C. neoformans 
by a damaged HCMOP-1c membrane (left) and a self-healed 
HCMOP-1c membrane (right).

Further studies found that HCMOP membranes not only 
inherit advantages from the polymer component, but also 
enhance membrane performance such as mechanical strength 
and selectivity attributable to the presence of MOPs. 
Mechanical properties of HCMOP-1 membranes were 
evaluated by stress–strain experiments. As shown in Figure 
4A, the Young’s modulus of HCMOP-1 was significantly 
enhanced when gradually increasing MOP content from 0 to 
0.4 (Figure S33). Among these membranes, HCMOP-1c 
achieved the highest Young’s modulus of 1721 MPa, almost 
1.5 times as much as the pristine polyimine membrane (1192 
MPa). That each MOP-1 cage can serve as a 6-connected node 
to provide high connectivity can explain this increase in 
strength. We also prepared a series of MOP-1'@polyimine 
MMMs as comparison (Figure S34), and found that ultimate 
stress and Young’s modulus of MOP-1'@polyimine showed 
the reverse trend vs. HCMOP-1, i.e. decreasing strength with 
increasing MOP-1' content from 0 to 0.4. These results further 
indicate that MOP-1 strongly bonds with polyimines via 
covalent bonds. Additionally, stress–strain experiments 
revealed that wet HCMOP-1 membranes possessed improved 
toughness over dry membranes (Figure 4B, S35 and Video S3), 
possibly because water induces hydrolysis of polyimines and 
facilitates imine/amine exchange reactions (Figure S26).46 

Notably, HCMOP-1c membranes possessed higher Young’s 
modulus in both dry and wet states compared with pristine 
polyimine. HCMOP-2 membranes also exhibited the same 

trend as HCMOP-1 with enhanced mechanical properties 
(Figure S36 and S37). Overall, the mechanical performance of 
HCMOP membranes was much better than the pristine 
polymeric membrane and traditional MOP-1'@polyimine 
MMMs.

Figure 4. (A) Stress-strain curves and Young’s modulus of 
dry HCMOP-1 membranes. (B) Stress-strain curves of wet 
HCMOP-1 membranes. (C) Reactants of control experiments. 
(D) Stress-strain curves of control 2, 3 and 4 compared with 
polyimine and HCMOP-1c.

To address the role of two specific amines in the preparation 
of hypercrosslinked membranes, we designed and fabricated 
four types of membranes with different reactants as control 
experiments and studied their relationship between 
components and mechanical properties (Figure 4C, S38 and 
Table S6). As shown in Figure 4D, control 1 of 
terephthaldehyde and diethylene triamine barely formed a 
freestanding membrane and it was found to exhibit poor 
mechanical behavior (stress-strain curve was not testable), 
possibly because it formed a linear polymer instead of a 
hypercrosslinked polymer network. After introducing MOP-1, 
the mechanical strength of the formed membrane was 
significantly improved in control 2. We also found that 
membranes in control 3 and 4 with tris(2-aminoethyl)amine 
possessed good ductility but low mechanical strength, which 
will limit their utility. On the contrary, HCMOP-1c 
membranes synthesized via adding both diethylene triamine 
and tris(2-aminoethyl)amine possessed the highest Young’s 
modulus. Hence, the two specific amines were essential to 
generate hypercrosslinked membranes with good mechanical 
properties.

MOP-1 and -2 can provide intrinsic positive charges (zeta 
potential of +38.4 and +62.2 mV, respectively) to hybrid 
systems. Therefore, HCMOP membranes should inherit 
properties from the cationic nature of the MOPs and could 
therefore exhibit distinct separation performance compared 
with pristine neutral polyimine membranes. We selected eight 
water-soluble dyes with different charges, including anionic 
dyes: Brilliant Yellow (BY), Chicago Sky Blue 6B (CSB) and 
Congo Red (CR); neutral dyes: Nile Red (NR), Rhodamine 6G 
(R6G) and Vitamin B12 (VB12); cationic dyes: Rhodamine B 
(RB) and Basic Brown (BB) (Figure S39 and Table S7). The 

Page 4 of 8

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



5

rejection results revealed that HCMOPs had remarkably better 
rejection performance for anionic dyes rather than neutral dyes 
and cationic dyes (Table S8) and that the effect was 
significantly improved with increased MOP content, e.g. the 
rejection ratio for BY improved from 76% to >99% (Figure 
5A). To further study the selectivity of HCMOPs for dyes of 
different charges, HCMOP membranes were subjected to two 
kinds of mixed feed of BY(anionic)/RB(cationic) or 
BY(anionic)/R6G(neutral). In these systems, all HCMOP 
membranes rejected BY and allowed RB or R6G to pass 
(Figure 5B, 5C and S40-S42). The adsorption capacity (Qt) 
was monitored for each membrane vs. time (Figure S43).57 
HCMOP-1c displayed the fastest adsorption initially and the 
highest Qt to BY ratio. The adsorption rate and capacity for 
RB of HCMOP-1c were much lower (Figure 5D). These 
results are consistent with the expected electrostatic 
interactions between HCMOPs and dye molecules. The 
reusability of HCMOP membranes was investigated by testing 
the separation of BY; no BY could be detected even after six 
filtration cycles (Figure S44). These results revealed that 
HCMOP membranes exhibit much better selective separation 
and mechanical performance than pristine polyimine 
membranes.

Figure 5. (A) UV-Vis spectra of BY solution Feed and 
Permeate. (B) Photograph to show the selective separation of 
BY from BY/RB mixture. (C) UV-Vis spectra of selective 
sieving of BY from BY/R6G mixture by HCMOP-1c 

membrane. (D) Adsorption capacity Qt versus time curves for 
the adsorption of BY, RB and R6G at 20 °C (‘*’ represents 
‘adsorbed on’).

CONCLUSION
In conclusion, we introduce a new generation of 
hypercrosslinked membranes through use of soluble MOPs as 
cross-linking co-monomers that serve as high connectivity 
nodes. The HCMOP approach affords macroscale, defect-free, 
freestanding hybrid membranes which inherit features from 
both the MOP (e.g. cationic nature and permanent porosity) 
and the polymer (e.g. self-healing ability, antimicrobial 
activity, high water permeability and good processability) 
components. In addition, the introduction of MOPs into 

polymers was found to significantly enhance mechanical 
properties, selective separation and water permeability. The 
self-healing ability and antimicrobial activity further supports 
the potential utility of HCMOP membranes (e.g. to kill 
pathogens and improve the durability of membranes) for 
treating pathogen contamination in water resources. The 
HCMOP membranes reported herein not only surpass 
traditional MOP-based MMMs, but also demonstrate 
advantages over polymer-MOP hybrid materials which mostly 
form gels or powders.25,35-39 We believe that the approach 
reported herein for fabricating HCMOP membranes will be 
applicable to other soluble porous materials that can serve as 
monomers and other polymer matrices.
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