posted on 2021-10-19, 10:24authored byJamie M. Madden, Guy McGrath, James Sweeney, Gerard Murray, Jamie A. Tratalos, Simon J. More
Introduction: Bovine tuberculosis (bTB) is an important zoonotic disease which has serious and sometimes fatal effects on both human and non-human animals. In many countries it is endemic in the cattle population and has a considerable economic impact through losses in productivity and impacts on trade. The incidence rate in Ireland
varies by herd and location and it is hoped that statistical disease-mapping models accounting for both spatio-temporal correlation and covariates might contribute towards explaining this variation. Methods: Ireland was divided into equally sized hexagons for computational efficiency (n = 997). Different spatio-temporal random-effects models (e.g. negative binomial Besag-York-Molli´e) were explored, using comprehensive data from the national bTB eradication programme to examine the association between covariates and the number of bTB cattle. Leveraging a Bayesian framework, model parameter estimates were obtained using the integrated nested Laplace approximation (INLA) approach. Exceedance probabilities were calculated to identify spatial clusters of cases.
History
Publication
Spatial and Spatio-temporal Epidemiology;39, 100441