Through-thickness modelling of metal rolling using multiple-scales asymptotics
A new semi-analytic model of the metal rolling process is introduced, which, for the first time, is able to predict the through-thickness stress and strain oscillations present in long thin roll-gaps. The model is based on multiple-scales asymptotics, assuming a long thin roll-gap and a comparably small Coulomb friction coefficient. The leading-order solution varies only on a long lengthscale corresponding to the roll-gap length and matches with slab models. The next-order correction varies on both this long lengthscale and a short lengthscale associated with the workpiece thickness, and reveals rapid stress and strain oscillation both in the rolling direction and through the thickness. For this initial derivation, the model assumes a rigid perfectly-plastic material behaviour. Despite these strong assumptions, this model compares well with finite element simulations that employ more realistic material behaviour (including elasticity and strain hardening). These assumptions facilitate the simplest possible model to provide a foundational understanding of the complex through-thickness behaviour observed in the finite element simulations, while requiring an order of only seconds to compute. This model can form the foundation of further improved models with more complicated mechanics in the future. Matlab code for evaluating the model is provided in the supplementary material.
Funding
Applied Mathematical Modelling of Industrial Metal Forming
UK Research and Innovation
Find out more...SFI Centre for Research Training in Foundations of Data Science
Science Foundation Ireland
Find out more...History
Publication
European Journal of Mechanics - A/Solids 113, 105712Publisher
ElsevierNote
A preliminary version of some parts of this work was presented at the 14th International Conference on the Technology of Plasticity, Mandelieu, France, September 2023Other Funding information
University of Warwick scholarshipAlso affiliated with
- MACSI - Mathematics Application Consortium for Science & Industry
- LERO - The Science Foundation Ireland Research Centre for Software
External identifier
Department or School
- Computer Science & Information Systems
- Mathematics & Statistics