Coordination networks that reversibly switch between closed and open phases are of topical interest since their stepped isotherms can offer higher working capacities for gas‐storage applications than the related rigid porous coordination networks. To be of practical utility, the pressures at which switching occurs, the gate‐opening and gate‐closing pressures, must lie between the storage and delivery pressures. Here we study the effect of linker substitution to fine‐tune gate‐opening and gate‐closing pressure. Specifically, three variants of a previously reported pcu‐topology MOF, X‐pcu‐5‐Zn, have been prepared: X‐pcu‐6‐Zn, 6=1,2‐bis(4‐pyridyl)ethane (bpe), X‐pcu‐7‐Zn, 7=1,2‐bis(4‐pyridyl)acetylene (bpa), and X‐pcu‐8‐Zn, 8=4,4′‐azopyridine (apy). Each exhibited switching isotherms but at different gate‐opening pressures. The N2, CO2, C2H2, and C2H4 adsorption isotherms consistently indicated that the most flexible dipyridyl organic linker, 6, afforded lower gate‐opening and gate‐closing pressures. This simple design principle enables a rational control of the switching behavior in adsorbent materials.
Funding
Investigation of the triple mutual system Li, Ba // BO2, F and the growth of bulk crystals of b-BaB2O4
Angewandte Chemie International Edition;58, 50, pp. 18212-18217
Publisher
Wiley and Sons Ltd
Note
peer-reviewed
Other Funding information
SFI, National Natural Science Foundation of China
Rights
This is the author accepted peer reviewed version of the following article:Tuning the gate-opening pressure in a switching pcu coordination network, X-pcu-5-Zn, by pillar ligand substitution, Angewandte Chemie Interntional Edition, 2019, 58 (50), pp. 18212-18217 which has been published in final form at https://doi.org/10.1002/anie.201909977 This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. http://olabout.wiley.com/WileyCDA/Section/id-828039.html#terms