University of Limerick
Browse

U-Net_dc: a novel U-Net-based model for endometrial cancer cell image segmentation

Download (3.11 MB)
journal contribution
posted on 2023-08-10, 08:00 authored by Zhanlin Ji, Dashuang Yao, Rui ChenRui Chen, Tao Lyu, Qinping Liao, Li ZhaoLi Zhao, Ivan GanchevIvan Ganchev

Mutated cells may constitute a source of cancer. As an effective approach to quantifying the extent of cancer, cell image segmentation is of particular importance for understanding the mechanism of the disease, observing the degree of cancer cell lesions, and improving the efficiency of treatment and the useful effect of drugs. However, traditional image segmentation models are not ideal solutions for cancer cell image segmentation due to the fact that cancer cells are highly dense and vary in shape and size. To tackle this problem, this paper proposes a novel U-Net-based image segmentation model, named U-Net_dc, which expands twice the original U-Net encoder and decoder and, in addition, uses a skip connection operation between them, for better extraction of the image features. In addition, the feature maps of the last few U-Net layers are upsampled to the same size and then concatenated together for producing the final output, which allows the final feature map to retain many deep-level features. Moreover, dense atrous convolution (DAC) and residual multi-kernel pooling (RMP) modules are introduced between the encoder and decoder, which helps the model obtain receptive fields of different sizes, better extract rich feature expression, detect objects of different sizes, and better obtain context information. According to the results obtained from experiments conducted on the Tsinghua University’s private dataset of endometrial cancer cells and the publicly available Data Science Bowl 2018 (DSB2018) dataset, the proposed U-Net_dc model outperforms all state-of-the-art models included in the performance comparison study, based on all evaluation metrics used.

History

Publication

Information 14,366

Publisher

MDPI

Other Funding information

National Key Research and Development Program of China under Grant No. 2017YFE0135700, the Tsinghua Precision Medicine Foundation under Grant No. 2022TS003, the Bulgarian National Science Fund (BNSF) under Grant No. KΠ-06-ИΠ-KИTAЙ/1 (KP-06-IP-CHINA/1), and the Telecommunications Research Centre (TRC) of University of Limerick

Department or School

  • Electronic & Computer Engineering

Usage metrics

    University of Limerick

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC