University of Limerick
Browse

A Systematic literature review on fault prediction performance in software engineering

Download (662.13 kB)
online resource
posted on 2012-01-05, 15:26 authored by Tracy Hall, SARAH BEECHAM, David Bowes, David Gray, Steven Counsell
Background: The accurate prediction of where faults are likely to occur in code can help direct test effort, reduce costs and improve the quality of software. Objective: We investigate how the context of models, the independent variables used and the modelling techniques applied, influence the performance of fault prediction models. Method:We used a systematic literature review to identify 208 fault prediction studies published from January 2000 to December 2010. We synthesise the quantitative and qualitative results of 36 studies which report sufficient contextual and methodological information according to the criteria we develop and apply. Results: The models that perform well tend to be based on simple modelling techniques such as Naïve Bayes or Logistic Regression. Combinations of independent variables have been used by models that perform well. Feature selection has been applied to these combinations when models are performing particularly well. Conclusion: The methodology used to build models seems to be influential to predictive performance. Although there are a set of fault prediction studies in which confidence is possible, more studies are needed that use a reliable methodology and which report their context, methodology and performance comprehensively.

History

Note

peer-reviewed

Other Funding information

Physical Science Research Council, SFI

Rights

“© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

Language

English

Usage metrics

    University of Limerick

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC