UNIVERSITY OF
LIMERICK

OLLSCOIL LUIMNIGH

Improvements to core-guided binary search for MaxSAT
Antonio Morgado, Federico Heras, Joao Marques-Silva

Publication date

01-01-2012

Licence

This work is made available under the CC BY-NC-SA 1.0 licence and should only be used in accordance with
that licence. For more information on the specific terms, consult the repository record for this item.

Document Version
1

Citation for this work (HarvardUL)

Morgado, A., Heras, F.and Marques-Silva, J. (2012) ‘Improvements to core-guided binary search for
MaxSAT’, available: https://hdl.handle.net/10344/2771 [accessed 25 Jul 2022].

This work was downloaded from the University of Limerick research repository.

For more information on this work, the University of Limerick research repository or to report an issue, you can
contact the repository administrators at ir@ul.ie. If you feel that this work breaches copyright, please provide
details and we will remove access to the work immediately while we investigate your claim.

https://creativecommons.org/licenses/by-nc-sa/1.0/
mailto:ir@ul.ie

Improvements to Core-Guided
Binary Search for MaxSAT

Antonio Morgadd, Federico Herds and Joao Marques-Siltd

! CASL, University College Dublin, Ireland
2 IST/INESC-ID, Lisbon, Portugal

Abstract. Maximum SatisfiabilityMaxSAT) and its weighted variants are well-
known optimization formulations dBoolean SatisfiabilitfSAT). Motivated by
practical applications, recent years have seen the developmeorefuided
algorithmsfor MaxSAT. Among thesecore-guided binary search with disjoint
cores(BCD) represents a recent robust solution. This paper identifies a number
of inefficiencies in the originaBCD algorithm, related with the computation of
lower andupper boundsluring the execution of the algorithm, and develops so-
lutions for them. In addition, the paper proposes two additional novehigahs,
which can be implemented on top of core-guided MaxSAT algorithms theat-ma
tain both lower and upper bounds. Experimental results, obtained cesesya-
tive problem instances, indicate that the proposed optimizations yield sagtific
performance gains, and allow solving more problem instances.

1 Introduction

Maximum SatisfiabilityMaxSAT) and its variants, namel\Weightedl (Partial) MaxSAT,
find a growing number of practical applications. Concretent examples include hard-
ware design debugging [19] and fault localization in C cdgle Ih addition, reference
applications that usBseudo-Boolean OptimizatigPBO) can be cast as MaxSAT [7,
4]. Another major application of MaxSAT is in algorithms fivtinimal Unsatisfiable
SubsetMUS) enumeration [13]. Indeed, the most efficient MUS enumenatilgo-
rithms build on MaxSAT algorithms for computing dlaximal Satisfiable Subsets
(MSSepand, from these, MUSes can be enumerated using a stahidting setap-
proach [13, 18]. The variety of relevant applications of M&f&umeration (e.g. [13, 1]),
further highlights the practical significance of efficienakBAT algorithms.

Motivated by the practical applications of MaxSAT, receaass have withessed a
large number of MaxSAT algorithms being proposed. MaxSAgraaches for solving
practical problem instances differ significantly from gantork on MaxSAT [12, 7].
These approaches are characterized by guiding the seatchngatisfiable subformu-
las [20] and are referred to apre-guidedMaxSAT algorithms [6, 16, 14, 2, 3]. Recent
work has proposed two core-guided versions of binary sefarcklaxSAT [8]. These
include a basic versiorBC) and a version that maintains a set of disjoint unsatisfiable

* This work is partially supported by SFI grant BEACON (09/IN.1/1261@)d by FCT grants
ATTEST (CMU-PT/ELE/0009/2009) and POLARIS (PTDC/EIA-CCO/183(2010).

cores BCD). TheBCD algorithm was shown to be one of the most efficient on a compre-
hensive set of problem instances from recent MaxSAT evialusitNevertheless, recent
detailed analysis dBCD revealed a number of possible inefficiencies, that resoihfr
relaxed and conservative maintenance of lower and upperdsou

This paper addresses the inefficiencies in the origd@ algorithm, and develops
a number of key optimizations. These optimizations can legoaized as: (i) modi-
fications to how the upper bound of each disjoint core isah#ed, updated, and an
associated maintenance ofjebal upper boung(ii) modifications on how the lower
bounds are updated when disjoint coresraszged and (i) techniques for refining the
lower bound so that it reflects a feasible sum of weights. THegipus optimizations
are implemented in a new algorithiBCD2, that often requires fewer SAT solver calls
thanBCD. The paper also proves the correctnesB@D2 and shows thaBCD2 is sig-
nificantly more efficient thaBCD on a comprehensive set of benchmarks from recent
MaxSAT Evaluations.

In addition, the paper proposes two novel techniques, #rate implemented on
top of any core-guided MaxSAT algorithm that maintains Hotter and upper bounds,
namely thehardening ruleand biased searchThe hardening rule which has been
extensively used imranch and boundalgorithms [5,12,11,7], is adapted for core-
guided binary search algorithms. As a result, many softsgdawcan be declardthrd.
Binary search algorithms always compute the middle valuesden a lower bound
and an upper bound. THeased searcliechnique allows biasing the search with the
outcomes of the previous iterations and compute a valuedsgtthe lower and upper
bounds, thouginot necessarilyhe middle one.

The remainder of the paper is organized as follows. Sectinotr@uces the MaxSAT
problem and core-guided binary search MaxSAT algorithrestiSn 3 details the in-
efficiencies of BCD, and develops a new improved algorithmcfare-guided binary
search with disjoint coreBBCD2). Section 4 presents the hardening rule and biased
search techniques for core-guided MaxSAT. Section 5 eteduthe performance of the
algorithms with the proposed techniques. Section 6 presemhe concluding remarks.

2 Preliminaries

Let X = {z1,z9,...,z,} be a set of Boolean variables. lkeral [is either a vari-
ablex; or its negationz;. A clausec is a disjunction of literals. A clause may also be
regarded as a set of literals. AssignmentA is a mappingA : X — {0,1} which
satisfies (unsatisfies) a Boolean variablg A(z) = 1 (A(x) = 0). Assignments can
be extended in a natural way for literal} énd clauses:

A(l) = {f‘(“"l’l(x)’ = A = max{AQ) L€ o)

Assignments can also be regarded as set of literals, in vadaist the assignmeut
satisfies (unsatisfies) a variabteéf = € A (z € A). A complete assignmegpbntains
a literal for each variable, otherwise igpartial assignmentA CNF formulay is a set
of clauses. Amodelis a complete assignment that satisfies all the clauses inRa CN
formula . The Propositional Satisfiability Probler(SAT) is the problem of deciding

whether there exists a model for a given formula. Given amatisfiable formulay, a
subset of clausegc (i.e. o C ¢) whose conjunction is still unsatisfiable is called
an unsatisfiable coref the original formula. Modern SAT solvers can be instrdcte
to generate an unsatisfiable core for unsatisfiable fornja@ls A weightedclause is

a pair (c,w), wherec is a clause and is the cost of its falsification, also called its
weight Many real problems contain clauses tiatistbe satisfied. Such clauses are
calledmandatory(or hard) and are associated with a special weightNon-mandatory
clauses are also callebft clauses. Aweightedformula in conjunctive normal form
(WCNF) ¢ is a set of weighted clauses. For MaxSATadelis a complete assignment
A that satisfies all mandatory clauses. Thst of a modeis the sum of weights of the
soft clauses that it falsifies. Given a WCNF formWggighted Partial MaxSATS the
problem of finding a model of minimum cost.

Core-guided binary search algorithms for MaxSAT Several MaxSAT solvers in the
literature are based on iteratively calling a SAT solver eafthing alower bound an
upper boundor both [6, 2, 3, 16, 14, 8, 10Core-guided MaxSAT algorithnese those
that additionally take advantage of unsatisfiable corespeet at each unsatisfiable
iteration to guide the search [6, 2, 3, 16, 14, 8], (some oftthise binary search [8]).

Auxiliary notation is introduced to describe core-guidéakoy search MaxSAT al-
gorithms. The remainder of the paper assumes a WCNF forgnwulish m soft clauses.
Core-guided algorithms uselaxation variableswhich are fresh Boolean variables.
The algorithms described add mostone relaxation variable to each soft clause. The
process of adding a relaxation variable to a clause, isrefdo agelaxingthe clause.
Relaxation variables are maintained in a Betand it is assumed that relaxation vari-
abler; is associated to the soft clausgwith weightw;, 1 < ¢ < m. In order to
add relaxation variables to soft clauses, the algorithmaghesfunctionRelax (R, ¢, ¥)
which receives a set of existing relaxation variablésa WCNF formulay and a set
of soft clauses) and returns the paiiR,, ¢,). ¢, corresponds t@ whose soft clauses
included iny have been augmented with fresh relaxation variablscorresponds
to R augmented with the relaxation variables addedyin Given the set of relax-
ation variables inR, the algorithms addardinality / pseudo-Boolean constrairi]
and translate them to hard clauses. Such constraints ystale that the sum of the
weights of the relaxed clauses is less than or equal to afgpeaiue K (At Most K
with 3 w;r; < K). The algorithms use the following functions:

— Soff(p) returns the set of afoftclauses inp.

— SATSolvefy) makes a call to the SAT solver and returns a triple o, A), where
st is the status of the formulg, that is whetherp is satisfiable (SAT or UNSAT).
If st =UNSAT, thenp contains an unsatisfiable corepfand if st =SAT, then
A corresponds to a complete satisfying assignment dthroughout the paper, by
abuse of notatiorst is referred to as the outcome of the SAT solver.

— CNFK¢) returns a set of clauses that encode the constraio CNF.

Core-guided binary searofBC) and its extensiowith disjoint coregBCD) [8] com-
pute both a lower bound and an upper bound and have been shdvenvery robust
approaches for MaxSAT solving (in terms of number of solveldnces). In what fol-
lows, the most sophisticated versidCD) is briefly overviewed.

Algorithm 1. BCD

Input: ¢
1 (pw, s, C,lastA) < (p, Sof t (), 0,0) /1 C - set of disj. core’s information
2 repeat
3 Vesecs vi e N+ 1=) Ty o | B30

(st, o, A) < SATSol ver (pw U UciecCNF(Z"jGRi wj T <))

4
5 if st= SAT then
6 lastA +— A
7
8

Vojee, pi = X ier, Wi Al)

else
9 subC < I ntersect(pc,C) I/ subC - set of disj. cores that intersect ¢c¢
10 if pc Nps =0and|subC| = |{< Rs, As,vs, s >}| = 1then
11 | As v
12 else
13 (Rs, pw) < Rel ax(0, pw, pc Nes)
14 (As,us)e(o,zy,jeRs wj + 1)
15 Ve esubes (Rsy sy pis) < (Rs U Ry As + N, pis + p3)
16 C+ C\subCU{< Rs,As,0, s >}
17 end
18 end

19 until vC,;EC Ai+1> ys
20 return last A

The pseudo-code &CDis shown in Algorithm 1BCD maintains information about
disjoint cores in a set (initially empty). Whenever a new core is found, a new engy
in C is created, that contains the set of relaxation variaBles the core (after relaxing
required soft clauses), a lower bouig, an upper bound:,, and the current middle
valuev, i.e. Oy =< R, Ag,vs, us >. The algorithm iterates while there exist€£a
for which A\; + 1 < u; (line 19). Before calling the SAT solver, for ea¢h € C, the
middle valuey; is computed with the current bounds andAtrivbst K constraint is
added to the working formula (lines 3-4). If the SAT solveiuras SAT, the algorithm
iterates over each cor€; € C and its upper boung; is updated according to the
satisfying assignmentl (lines 6-7). If the SAT solver returns UNSAT, then the set
subC is computed which contains evety; in C that intersects the current core (i.e.
subC C C, line 9). If no soft clause needs to be relaxed antdC| = 1, thensubC =
{< Rs, \s, Vs, 1s >} and s is updated tass (line 11). Otherwise, all the required soft
clauses are relaxed, an entry for the new a@rds added taC, which aggregates the
information of the previous cores isubC, and each”; € subC is removed fromC
(lines 13-16).

A concept similar to disjoint cores (namely covers) is usgthie core-guided (non
binary search) algorithm WPM2 [3] coupled with the constimio add in each itera-
tion.

3 Improving BCD

Detailed analysis dBCD has revealed two key inefficiencies, both related with hasv th
lower and upper bounds are computed and updated. The firsivaltion is thaBCD
doesnot maintain aglobal upper boundWhen the SAT solver outcome is satisfiable
(SAT), eachy; value is updated for each disjoint cof¢ € C, with an overall sum

Algorithm 2: BCD2

Input: ¢
1 (ew,ps) < (¢,Sof t(¢))
2 chekpsw gj < wj

3 (CoAu) — (0.0,1+ 5, g 05)
4 repeat

Aitey
5 vCiecv Vi L#J
6 (st, o, A) < SATSol ver (pw U UciecCNF(ereRi w15 < vg))
7 if st= SAT then
8 VC]‘E‘PS’ o; <0
9 vciecvwegi, oj «— wj- (1 —A(c; \ {r;})) I'l ¢; € pw and r; € ¢;
10 Yc,ec, € ereRi oj
1 (1 Ap) = (e, ee ereR,, o5, A)
12 else
13 subC < I ntersect (pc,C)
14 if opc Nps = 0and|subC| = [{< Rs, As, Vs, €5 >}| = 1then
15 ‘ As + Refine({w]'}rjeRs7 Vg
16 else
17 (Rs, pw) < Rel ax(Ug, coune Bir pws po N @s)
18 A« min {1 + min{v; — X; | C; € subC}, min{wj; | r; is a new relax. vat.}
19 As «+Refine({“’j}rjeRsv ZClEa‘ubC i +A—-1)
20 65e((Au:@)?I:O)JrZTjERSUJ
21 C <+ C\subCU{< Rs,As,0,¢5 >}
22 end
23 end

24 until Zciec Ai = Zciec € = [
25 return A,

given by K1 =) .. pi- However, after merging disjoint cores, if the SAT solver
outcome is again SAT, it can happen tiat = > . pi > K. Although this issue
does not affect the correctness of the algorithm, it canltr@sa number of iterations
higher than needed to compute the optimum. The second ageris that the lower
bound updates for each disjoint core are conservative. A roareful analysis of how
the algorithm works allows devising significantly more agggive lower bound updates.
Again, the main consequence of using conservative lowend®is that this can result
in a number of iterations higher than needed to compute ttismom.

This section presents the new algoritB@D2. Although similar toBCD, BCD2 pro-
poses key optimizations that address the inefficienciesritbesl above. As the experi-
mental results demonstrate, these optimizations leadytofisiant performance gains,
that can be explained by a reduced number of iterations.

The pseudo-code @&CD2 is shown in Algorithm 2. The organization 8CD2 is
similar to the organization dBCD but with important differences. The first difference
betweenBCD and BCD2 is the way the algorithms use the information of the upper
bounds. As stated beforBCD does not maintain a global upper bound, and as such,
whenever an upper bound is needed, then the worst caseisdsnesed. Concretely in
line 14 of BCD, the upper bound is updated with the weights of the new rdlaleises.

On the other hanBCD2 keeps aglobal upper bound: and its corresponding as-
signmentA,,. More importantly it maintains the cost of each soft clauselfie current
global upper bound. In order to achieve tH#&D2 associates with each soft clause

a variableo; that represents the contribution of the clause to the dveost of the
global upper boundr; can take as value eithéror w; (the weight of the soft clause
J) depending on whethed,, unsatisfies the clause or not. In contrasB@D, the con-
tribution of soft clauses is with respect to the originalighles. As such in line 9 of
BCD2, the update ob; considers the satisfiability of the clausgwithout the relax-
ation variable @, - (1 — A(c; \ {r;}))), rather than the satisfiability of the relaxation
variable (; - A(r;)) as inBCD (line 7). Considering the satisfiability of the original
soft clause instead of the associated relaxation variabkethe benefit of tightening the
upper bound on assignments that satisfy the clause witheutelaxation variable but
still satisfy the relaxation variable.

Unlike BCD, BCD2 does not maintain upper bounds in the disjoint cores. Idstea
each disjoint core”; maintains arestimatee; that represents the contribution of the
disjoint core to the cost of the global upper bound. Egdakes the role of the upper
boundsy; in BCD, with updates that respect the last satisfying assignniéwt differ-
ence is that irBCD2, the updates of the estimates, done in lines 10 and 20, ia¢hed
contribution of the soft clauses to the global upper boutat¢sl in thes; variables).

The use of; variables in the computation of estimatesallow BCD2 to use the in-
formation of the current upper bound assignment for a tighdeind, specifically, when
merging cores with soft clauses not previously relaxed. ddr@ribution of the newly
relaxed clauses in the updateegin line 20, is dependent on a previous discovery of a
satisfying assignment. Before the first satisfying assigminis found, the contribution
is the same as iBCD, that is the weight of the soft clause;(= w;, initialization of ;
in line 2 of BCD2), whereas after the first satisfying assignment, newlykeglalauses
are satisfied byd,, (thuso; = 0 from line 8) and its contribution te; is 0.

The reason why the; variables are called estimates is that, unlike the uppendbou
1; of BCD, thee; variables are allowed to have a value lower than the costeobiti-
mum model restricted to the clauses associated to themligjoie. In such situations
is said to beoptimisticand represents a local optimum of a MaxSAT mo@&€lD2 can
shift e; away from the local optimum by merging with different coresneeded.

Example 1.Consider an execution of the algorithm with the current wagkformula

ow = " Ul , wherep® = {(z1 Vr1,5), (22 V r2,10), (3 V 3, 30), (x4 V 74,10)} and

o = {(—x1 V —x2), (mx2 V —3), (—a3 V —z4)). Consider the upper bound assignment

Ay ={x1 =23 =712 =714 = 0,20 = 14 = 1 = r3 = 1} with a cost of 35, and two dis-

jOint coresCy =< Ry = {7“1,7’2},)\1 =511 =5,e1=5>,Cy =< {7’3,7’4}, 10,20, 30 >.
The optimum cost of is 20. Considering the optimum model, the contribution of

the clauses associatedd® is 10 which is lower thare,, thuse; is optimistic The next

core returned by the SAT solver merg€s and C5 into a new disjoint core’'; with

€3 = 35.

Another improvement iBCD2 is the way the lower bound is computed when merg-
ing cores. In this caséBCD2 proposes a stronger update in lines 18 and 19, which
corresponds to the expression in Equation 1.

Z Ai + min {1+ min{r; — \i|Ci € subC}, min{w;|r; new relax. vag} (1)
C,;esubC

The update of the lower bound of the merged disjoint coresgmaiion 1, is obtained
by summing all the previous lower bounds, as is dond6® in line 15, but also by

adding an incrememt\ (line 18 inBCD2). The rationale for the increment comes as

a justification for obtaining the current core. At this poaftthe algorithm, there are
three possible reasons why the current core was obtairezh€ior more of the newly
relaxed soft clauses has a non-zero contribution to theofalse final optimum model;

(i) one or more of the disjoint cores is unable to satisfy ¢bheresponding constraint
ereRi wj - r; < vy (iii) @ combination of the previous two.

Suppose that the reason for obtaining the current core itatedsn (i). Since the
number of newly relaxed soft clauses with a non-zero coutiob is unknown, them\
corresponds to the weight of the relaxation variable withldwest weight, that is, in
this caseA = min{w;|r; new relax. vat.

Consider now that the reason for obtaining the current as istated in (ii). Then
at least one of the disjoint cores merged, requires its Idwend to be increased from
A toy; + 1 (an increment ofl + v; — ;). Since it is unknown which disjoint cores
require to be increased, then ihis only considered the disjoint core with the lowest
increment, that isA = 1 + min{v; — \;|C; € subC}.

Finally, in the case of reason (iii), the incremehtan be obtained by summing the
increments corresponding to the previous reasons. N&lest it is unknown exactly
which of the three reasons explains the current core, B@®2 uses as increment the
minimum of the previous increments, thus obtaining the esgion in Equation 1.

An additional difference between the algorithms is the dsb®Refind) function
to further improve the update of the lower bound in lines 18 a8 of BCD2. The
result of Refind{w;}, \) is the smallest integer greater tharthat can be obtained
by summing a subset of the input weights; }. In BCD2, Refind{w,}, \) starts by
searching if all weights are equal, in which case the mininsum of weights greater
than\ is returned, otherwisesubsetsuit{w, }, \) is computed as used by WPM2 [3].

Finally, the last difference betwed3CD and BCD2 is the stopping criteria. Given
the new boundBCD2 stops when the sum the lower bounds of each disjoint coreis th
same as the global upper bound.

3.1 Proof of correctness

This subsection proves the correctness of B2 algorithm. First, the correctness
of the updates of the lower bound are proven, followed by @fpod the invariant of
BCD2. The section ends with a proof of the correctnesB@D2.

Proposition 1. Consider a disjoint core”; in the conditions of the update of; in
line 15. There is no MaxSAT model for which the clauses aswattoC, contribute to
the cost with a value smaller thake fine({w;},,cr. ,Vs)-

Proof. Consider an iteration where the SAT solver returned a coielwdnly contains
clauses previously relaxed, and that these clauses beldhg same disjoint coré.

For the purpose of contradiction, assume there is a mod<iarh the clauses of
C, contribute with a cost lower tham, + 1. Then the assignment of the model can
be augmented with assignments to the relaxation variables) that, each relaxation

variabler; € R is assigned true iff the assignment of the model does naifgdtie
corresponding clause. The augmented assignment is able to satisfy the constraint
ZneRS w; -y < vg, all the hard clauses (because it is a MaxSAT model), andall t
soft clauses (due to the assignments to the relaxationblesia Then the core returned
by the SAT solver is not an unsatisfiable subformula, which ésntradiction, thus the
update), < v, + 1 is correct.

Since there is no model witky < v,, then the next value to consider @meRs w;+
r; is the minimum sum of subsets oi; } <z, thatis greater than,. This corresponds
to the value returned bite fine({w; },,er.,vs). Thus the update on line 15 is correct.

Proposition 2. Consider the subset of disjoint coreshC = {C4,...,C,, } and a new
set of relaxation variables and as in the conditions of line 19, then there is no MaxSAT
model for which the clauses associated to the resultinguisgore C; contribute to
the cost with a value smaller thae fine({w; }r;er., Do, coupe Mi + A — 1).

Proof. There is no model with cost lower thgn ., ..., Ai because at this point of
the algorithm, each disjoint col&; € subC has been proved to have a lower bound of
at least)\;. Then the union of disjoint sets of the clauses of e@¢tiogether with the
clauses that just got relaxed have a cost of at [gast A; in any MaxSAT model.

Consider by contradiction, that there is a model, for whiehdlauses associated to
the resulting disjoint cor€’s, have a costostSol € [3. c.upe Ais Do, coune Ni + AL
Two cases are considered.

1) In the first case, suppose that the model assigns to truesitdea of the new
relaxation variables (of the soft clauses that just gotesdy, and that the cost associated
to that relaxation variable i®,,..,zy. Then,

Wnewry > min{w;|r; is a new relax. vaj. > A
Consider the contribution of all the clauses without the Igygelaxed clause:
costSol — wnpewry < costSol — A

but by contradictiorcostSol < » . ¢ e Ai + A and then

costSol — Wnewry < costSol — A < Z i
C;esublC

which means that the contribution of the remaining clauséswer than . ., Ai;
but this is a contradiction (previously the cost of the urebuolauses of’; € subC was
proven to be atleast’ . . Ai)-

2) In the second case suppose that the model assigns all ndakgdeclauses to
false, then the contribution of the newly relaxed clausés $ince by contradiction

costSol < Y N+A< > A+ 1+min{y — \|Ci € subC}
C;esublC C;esubC

then
costSol — Z Ai <A1+ min{y; — N|Cs € subCl < 1y
C;esubC\{C1}

Let costSol(C;) be the contribution of the clauses ©f to the cost of the model.
Previously, was proven thabstSol(C;) > A;, then

costSol(C1) = costSol — Z costSol{C;) < costSol — Z Ai <y
C;esubC\{C1} C;esubC\{C1}

By analogy, for each of the disjoint cores mergéde subC, costSol{C;) < v; Then
the model is able to satisfy all the new soft clauses and thetaintsy |, ., w;-7; <
v;. Since the model is a MaxSAT model, then it is also able saalifthe hard clauses,
meaning that the model is able to satisfy all the clausesdrtte; but this is again a
contradiction.

Since there is no model with, < > ,.,c Ai+4, then the next value to consider
for E%RS w; - r; is the minimum sum of subsets éfv; }, <, that is greater than
Y-, esuvc Ni + A — 1. This corresponds to the value returned by
Refine({w;}r,er., > c,csupc Ni + A — 1). Thus the update on line 19 is correct.

Proposition 3 (Invariant of BCD2). Let opt be cost of the optimum model of a MaxSAT
instance. During the execution BCD2, the invariant . .. \i < opt < p holds.

Proof. Initially C is empty, and) . . A; is 0. On the other hand is initialized to
(s wy)eSoft(p) Wi T 1. SINCRO < opt < 37 yesopi(p) Wi then initially the
invariant holds.

Each); is only updated on unsatisfiable iterations in lines 15 anaifiBeach update
was proved to be correct in Propositions 1 and 2, respegtiVelen after the updates
we are guaranteed that . .. \; < opt.

Consider now a satisfiable iteration. Assume for the sakeonfradiction thatu
is updated such that < opt. Then the assignment returned by the SAT solver can
be extended with assignments to new relaxation variables f@ each clause not yet
relaxed). In particular, these variables can be assignke Valse. Then, the sum of
the weights of the relaxation variables assigned valueigr'l@wer thanopt which is
a contradiction since, by definition, the sum of weights ddixed clauses is an upper
bound on the optimum MaxSAT model.

Proposition 4. For any disjoint coreCs, the invarianth; < €, holds.

Proof. The values of variables are only updated in lines 10 and 20 (see Algorithm 2).
The updates are due to assignments that are models to theAW&x®nula, and repre-
sent the cost of the model with respect to the clauses assdd¢@mthe disjoint coré’;.
Line 20 also considers the case where no model has been fetnaing updates; to
one plus the sum of all the weights of the soft clauses coreside

On the other hand, the values of variablesare only updated in lines 15 and 19.
In Propositions 1 and 2, was proven that there is no MaxSATahwith a cost smaller
than the update of the lower bound in lines 15 and 19 (withees the clauses
associated with the resulting catg). Hence \; < ¢, for each disjoint core’s.

Proposition 5. BCD2 is correct and returns the optimum model for any WCNF for-
mula.

Proof. The algorithm performs binary search on the range of vallies _. A;, ..., u}.
In each iteration the algorithm asks for a model with a coshasty" . . v;. Due to
the assignment of each in line 5 and Proposition 4, them ., .. A\ < >0 o vi < p.
If the SAT solver returns with a satisfiable answer, theis updated to a lower value
than the current upper bound (due to the added constralihtsg SAT solver returns
with an unsatisfiable answer, then eithey. .. \; increases or more than one of the
disjoint cores are merged. Since the number of clauses telbred is bounded by
the number of soft clauses, then the maximum number of merfgdsjoint cores is
also bounded (disjoint cores only contain clauses thatedaged). Thus the number of
iterations where the algorithm does not increase theg@ec \;, IS bounded.

Finally, Proposition 3 proves that during the executionha algorithm, there is
always an optimum MaxSAT model between the bounds. Sincbdhads are integer
numbers, then the algorithm is guaranteed to stop with thienopg MaxSAT model.

4 Additional Techniques

This section introduces two additional techniques to inapriie performance of core-
guided binary search algorithms, namely, the hardenirgyantl biased search.

4.1 Hardening rule

The hardening ruleis widely used irbranch and boundBB) algorithms for MaxSAT
[12,11, 7] which are based onsystematic enumeratioof all possible assignments,
where large subsets néelesassignments are discarded by computipperandlower
boundson the cost of the optimum model. Whenever the weight of a daftse plus
the lower bound reaches the upper bound, the clause camadehard. Indeed, the
hardening rule was introduced in the most primitive BB ailfpon for MaxSAT in the
literature [5], but nowadays is still not used in core-gaidiéaxSAT algorithms. In what
follows, a first integration of the hardening rule is propbé$er core-guided MaxSAT
algorithms that maintain both a lower bound and upper botméxplain the idea, each
soft claus€ ¢, w) is extended with two weights:, w, w’) wherew is the original weight
andw’ represents the weight of the clause aftecdstributionsto the lower bound have
been deducted.’ will be referred as thdeductedveight. Letp, be a set of soft clauses
involved in an increment of the global lower bound. Then, the deducted weight of all
the soft clauses ip,; needs to be decreased ByAs a result, the hardening rule is
applied taking into account the deducted weight rather thawriginal one. Hence, the
hardening rule is shown in Equation 2

if w' + X > pthen(c,w,w’) can be replaced bge, T, T) 2

Let (¢, w,w’) be a soft clause that is made hard due to the hardening ruéze Ere
two situations. If the soft clause has no relaxation vaeatiie weight of the clause is
just replaced byr. If the soft clause has a relaxation variable, the weighpidated to
T and additionally, the relaxation variable is removed.

Example 2.Consider the formuld(z, 3, 3), (z,4,4), (y,3,3), ... }. An initial upper
bound; = 5 is obtained using any heuristic [8]. An initial lower bound= 3 can

be obtained due to an unsatisfiable core between the two léwsses. The minimum
weight for the conflicting clauses:, 3,3) and(z, 4,4) is 3. The resulting formula is
{(z,3,0),(z,4,1), (y,3,3),... } with A\ = 3. Then, the hardening rule can be applied
to the clausdy, 3, 3) given that3 + 3 > 5 . Hence,(y, 3, 3) is replaced by(y, T, T).
The current formula i§(z, 3,0), (z,4,1),(y, T, T),... } with A = 3 andu = 5.

The integration of the hardening rule BCD2 is as follows. Assume BCD2 main-
tains internally the deducted weight of each soft clausen @y of the initial lower
bounds introduced in [8] can be used. Such lower boundstiitela compute unsat-
isfiable cores until a satisfiable instance is reached. Fohn easatisfiable core, the
minimum weight is subtracted to the deducted weight of eaftctause in the core.

Assume any arbitrary iteration of the main loopBED2. Let A = > .. \; be the
global lower bound and lgt = . .. ¢; be the global upper bound, before the call
to the SAT solver (line 6). After the call to the SAT solvereth are two possibilities:

— The SAT solver returns satisfiable (SAT). The global uppemul. is updated and
the hardening rule is checked with the new global upper bound

— The SAT solver returns unsatisfiable (UNSAT) and the globalelr bound is in-
creased. Let\" = > . _. \; be the new global lower bound in line 23. Lét
be the difference between the previous and the current glowar bounds, i.e.,
d = XN — \. Such increment is due to the disjoint cor€’s in line 15 or in line
21. Hence, the deducted weight of each soft clause in theepdigjoint coreC is
decreased by. Afterwards, the hardening rule is checked.

4.2 Biased Search

At each iteration, binary search algorithms compute a migdluer between an upper
boundy and a lower bound (i.e.v <+ L%J). However, when the cost of the optimum
model is close to one of the bounds, binary search can malkeadéterations before
realizing that. In fact, QMx SAT (0.4 version) solver [10] alternates iterations which
compute the middle value between the bounds, and iteratibith use the value of the
upper bound. As such, QM SAT favors the discovery of models with a cost closer
to the upper bound. Note that QM SAT was the best performing solver on recent
MaxSAT Evaluations in theartial MaxSAT industriatategory.

This paper proposes to compute a value between the lowedtnchupper bound
(i.e. v € [A u]) based on the previous iterations. Two counters are magedaiA
counter of the iterations that returned satisfiable (SAJ9t¢, and a counter of the iter-
ations that returned unsatisfiable (UNSAT)nsat. Both counters are initialized to 1.
At each iteration of the binary search algorithm the follogvpercentage is computed:

p = nunsat/(nunsat + nsat)

The expression compares the number of unsatisfiable tasatigainst the total number
of iterations, and gives a value closer to the bound with fesvicomes in terms of a
percentage. The valueto be considered at each iterationvis= A + p x (u —).

Note that the QMX SAT approach is similar to always alternating the percesmtag
p between50% (middle value) and00% (upper bound). The integration BCD2 is
straightforward. For each disjoint cofé with estimate of the upper bourgdand lower
bound);, BCD2 computes the value; asv; = A; +p x (¢; — A;).

1800 + H—Hr——t—+ +HH HH——t ¥ 1800 T
1 BC - x g Fi
+ BCD -+ I I
1600 e 4 1600 |- BCD2 - e # g
I BCD2:B -+ fes
+ BCD2-H & Fi Iy g :
1400 -+ + 1400 |- BCD2.B-H -+ F igs
+ + ; ¥4
1200 i 1200 r"" I -
e F i ° H 5 1
1000 e £ 1000 i#yd
a 4 T + s *
2 i+ + 4 > ; /
© goofk e & 800 4 E¥r
o+ + >~ é{}i 4
600 e s B * 600 ; g4
FE T R =+ il
+ w4 Pttt
400 - B 400 —
jie
F 4+
200 [R 200
+
o AR T 0 i i i i
0 200 400 600 800 1000 1200 1400 1600 1800 1500 1550 1600 1650 1700 1750 1800
BCD2 # Instances

Fig. 1. (a) Scatter plot oBCD vs BCD2, (b) Cactus plot oBC, BCD, BCD2 and BCD2 with
additional techniques

5 Experimental Evaluation

Experiments were conducted on a HPC cluster with 50 nodes, eade is a CPU
Xeon E5450 3GHz, 32GB RAM and Linux. For each run, the timetlwas set to
1800 seconds and the memory limit to 4GRD2 and the additional techniques were
implemented in the MSNCORE[17] system, and compared agaiB& andBCD>.

Figure 1 presents results on the performanc8@D2 (from Section 3) and the
new techniques (from Section 4) in all of then-randominstances from 2009-2011
MaxSAT Evaluations (for a total of 2615 instances). Thetscaiiot (Figure 1.a) shows
a comparison of the origin®CD [8] with BCD2 (as described in Section 3). Note that
BCD2 (1813) solves 12 more instances tHaED (1801). The scatter plot indicates that
in generaBCDrequires larger run times th&CD2. A more detailed analysis indicates
that, out of 1305 instances where the performance differéetweerBCD and BCD2
exceeds 20¥BCD2 outperformsBCD in 918, wherea8CD outperformsBCD2 in 387.
Moreover, over the 1793 instances solved by andBCD2, the total number of
SAT solver calls foBCDis 124907 and foBCD2 is 68690. This represents an average
of 31.5 fewer SAT solver calls per instance B€D2 (from 69.7 to 38.3), i.e. close to
50% fewer calls irBCD2 than inBCD on average. The difference is quite significant;
it demonstrates the effectiveness of the new algorithmalsat indirectly suggests that
some of the SAT solver calls, being closer to the optimum, &yarder foBCD2
than forBCD. NeverthelessBCD2 consistently outperformBCD overall.

The cactus plot (Figure 1.b) shows the run timesB6D, BCD2, BCD2 with hard-
ening rule BCD2-H), BCD2 with biased searchBCD2-B) andBCD2 with both tech-
niques BCD2-B-H). The original core-guided binary search algorithrh(BC) is also
included. The performance difference betw®&&b andBCD2 is conclusive, and con-
firmed by the area below each plot. For the vast majority afaimses BCD2 outper-
forms BCD. The hardening ruleBCD2-H) allows solving 3 additional instances than

3 Observe that in [8]BCD was shown to solve more instances than a representative sample of
MaxSAT solvers.

1800

Lrv—

o 55 : L
Set |#1.|| BC|BCD|BCD2 |BCD2-B|BCD-H|BCD-B-H geoze H ¢ j A
Upgradd 100[| 65| 100[100 | 100 | 100 | 100 1400 -BCOZEH e 3 o7 7
TimeT | 32 (/11| 12| 12 | 13 13 13 1200 7 i ¥
Pedi-A | 45 || 37| 38| 39 | 39 41 a4 |, y; ;‘/ P
Pedi-B | 45 || 45| 44 | 44 | 44 45 45 | ° 7 Fid g
Pedi-C | 90 || 68| 73| 77 | 76 | 84 83 [o / Sf ﬁ-’/
Pedi-D | 50 || 44| 44 | 43 | 43 45 45 o P Ay
Pedi-E | 90 || 42| 50| 57 | 59 66 67 /,/ Z/ f
Pedi-F | 90 || 49| 59| 63 | 62 73 74 400 - /l j
Pedi-G | 90 || 20| 30 | 39 | 40 47 50 o
Total | 632(|381]450| 474 | 476 | 514 | 521

° 2‘00 2‘50 3‘00 350 400 450 500

Instances
() (b)

Fig. 2. (a) Table number of solved instances per algorithm (b) Cactus plot withliffezent
algorithms.

BCD2, whereas biased seardddD2-B) allows solving one more instance. However,
the integration of both techniqueB{D2-B-H) allows solving 1832 instances, i.e. 19
more instances thaBCD2 and 31 more than the originBICD. As expectedBC is the
worst performing algorithm (solves 1730 instances), anliréctly demonstrates that
maintaining disjoint cores is essential to obtain a moreisbhlgorithm.

The effect of the more accurate bounds maintainedB6i2 and the additional
techniques is even more significant on weighted partial M@x8dustrial instances. A
second experiment, see Figure 2, shows the results foui@adeabilityinstances, 32
timetablinginstances [3] and 50Baplotyping with pedigreemstances [15]. Observe
that the haplotyping with pedigrees instances are dividétsets (A, B, C, D, E, F, G).
The results are summarized in the table of Figure 2.a. Thecfiftamn shows the name
of benchmark set. The second column shows the total numhastainces in the set.
The remaining columns show the total number of solved irgsmwithin the time and
memory limits byBC, BCD and the different versions &CD2. The same results are
presented with a cactus plot in Figure 2.b to highlight th#tirnes.

BC is again the worst performing algorithm, and is the only apph unable to
solve the 100 upgradeability problenBCD outperformsBC and solves 69 more in-
stancesBCD?2 is clearly better thaBCD, being able to solve 26 more instances. Biased
search BCD2-B) has small effect and solves 2 more instances B@D2. The harden-
ing rule BCD2-H) is quite helpful on these instances and solves 40 motarioss than
BCD2. Finally, the integration of the two new techniqu&CD2-B-H) allows solving
521 instances, i.e. 47 more instances tB&D2 and 71 more than the originBCD.

6 Conclusions

This paper proposes a humber of improvements to a recerhoped MaxSAT algo-
rithm [8] that implements core-guided binary search. Th& finprovement addresses
the organization of the original algorithm, and modifies #hgorithm to (i) maintain
a global upper bound, that results in tighter local uppemidgiufor each disjoint core;

and (ii) use of more aggressive lower bounding techniqubs.improvements to the
upper and lower bound result in significant reduction in theber of SAT solver calls
made by the algorithm. The second improvement consists @fiéahniques that can
be implemented on top of any core-guided algorithm that losesr and upper bounds.
One of the techniques is referred to as the hardening rulehasdbeen extensively
used in branch-and-bound algorithms [5, 12, 11, 7], but matire-guided algorithms.
The second technique is referred tobéased searchand is shown to work effectively
with the hardening rule. Experimental results, obtained @omprehensive set of in-
stances from past MaxSAT Evaluations, demonstrates tieahéiw algorithmBCD2
significantly outperforms (an already quite roblBED.

References

1. Z. S. Andraus, M. H. Liffiton, and K. A. Sakallah. Reveal: A fornvefification tool for
verilog designs. IlLPAR pages 343-352, 2008.
2. C. Anstegui, M. L. Bonet, and J. Levy. Solving (weighted) partial MaxSAT tlylo satis-
fiability testing. INSAT, pages 427-440, 2009.
3. C. Andtegui, M. L. Bonet, and J. Levy. A new algorithm for weighted partial saix In
AAAI Conference on Artificial Intelligenc@AAl, 2010.
4. A.Biere, M. Heule, H. van Maaren, and T. Walsh, editétandbook of Satisfiability2009.
5. Brian Borchers and Judith Furman. A two-phase exact algorithmméor-sat and weighted
max-sat problems]. Comb. Optim.2(4):299-306, 1998.
6. Z. Fu and S. Malik. On solving the partial MAX-SAT problem. $AT, pages 252-265,
August 2006.
7. F. Heras, J. Larrosa, and A. Oliveras. MiniMaxSat: An efficieatghited Max-SAT solver.
JAIR, 31:1-32, Jan 2008.
8. F. Heras, A. Morgado, and J. Marques-Silva. Core-guided Yisearch algorithms for
maximum satisfiability. IPAAAI, 2011.
9. M. Jose and R. Majumdar. Cause clue clauses: error localizatiopmsiximum satisfiabil-
ity. In PLDI, pages 437-446, 2011.
10. M. Koshimura, T. Zhang, H. Fujita, , and R. Hasegawa. QMax3Apartial Max-SAT
solver.JSAT pages 95-100, 2012.
11. J. Larrosa, F. Heras, and S. de Givry. A logical approachficiesft Max-SAT solving.
Artificial Intelligence 172(2-3):204—-233, 2008.
12. C. M. Li, F. Many, and J. Planes. New inference rules for Max-SAdurnal of Artificial
Intelligence Researct30:321-359, October 2007.
13. Mark H. Liffiton and Karem A. Sakallah. Algorithms for computing miainunsatisfiable
subsets of constraintd. Autom. Reasoning0(1):1-33, 2008.
14. V. Manquinho, J. Marques-Silva, and J. Planes. Algorithms faghted Boolean optimiza-
tion. In SAT, pages 495-508, 2009.
15. J. Marques-Silva, J. Argelich, A. Graca, and |. Lynce. Boolegitographic optimization:
Algorithms and applicationsAnnals of Mathematics and A, pages 1-27, 2011.
16. J. Marques-Silva and J. Planes. Algorithms for maximum satisfiabgitygwnsatisfiable
cores. INDATE, pages 408-413, 2008.
17. A.Morgado, F. Heras, and J. Marques-Silva. The MSUnCoreS¥a solver. InPOS 2011.
18. R. Reiter. A theory of diagnosis from first principlestif. Intell., 32(1):57-95, 1987.
19. S. Safarpour, H. Mangassarian, A. Veneris, M. H. Liffiton, &nd\. Sakallah. Improved
design debugging using maximum satisfiability. AMCAD, 2007.
20. L.Zhang and S. Malik. Validating sat solvers using an independealution-based checker:
Practical implementations and other applicationsDATE, pages 10880-10885, 2003.

	Improvements to core-guided binary search for MaxSAT

