
Improvements to core-guided binary search for MaxSAT

Antonio Morgado, Federico Heras, Joao Marques-Silva

Publication date

01-01-2012

Licence

This work is made available under the CC BY-NC-SA 1.0 licence and should only be used in accordance with
that licence. For more information on the specific terms, consult the repository record for this item.

Document Version
1

Citation for this work (HarvardUL)

Morgado, A., Heras, F.and Marques-Silva, J. (2012) ‘Improvements to core-guided binary search for
MaxSAT’, available: https://hdl.handle.net/10344/2771 [accessed 25 Jul 2022].

This work was downloaded from the University of Limerick research repository.

For more information on this work, the University of Limerick research repository or to report an issue, you can
contact the repository administrators at ir@ul.ie. If you feel that this work breaches copyright, please provide
details and we will remove access to the work immediately while we investigate your claim.

https://creativecommons.org/licenses/by-nc-sa/1.0/
mailto:ir@ul.ie

Improvements to Core-Guided
Binary Search for MaxSAT

Antonio Morgado1, Federico Heras1, and Joao Marques-Silva1,2
⋆

1 CASL, University College Dublin, Ireland
2 IST/INESC-ID, Lisbon, Portugal

Abstract. Maximum Satisfiability(MaxSAT) and its weighted variants are well-
known optimization formulations ofBoolean Satisfiability(SAT). Motivated by
practical applications, recent years have seen the development ofcore-guided
algorithmsfor MaxSAT. Among these,core-guided binary search with disjoint
cores(BCD) represents a recent robust solution. This paper identifies a number
of inefficiencies in the originalBCD algorithm, related with the computation of
lower andupper boundsduring the execution of the algorithm, and develops so-
lutions for them. In addition, the paper proposes two additional novel techniques,
which can be implemented on top of core-guided MaxSAT algorithms that main-
tain both lower and upper bounds. Experimental results, obtained on representa-
tive problem instances, indicate that the proposed optimizations yield significant
performance gains, and allow solving more problem instances.

1 Introduction

Maximum Satisfiability(MaxSAT) and its variants, namely (Weighted) (Partial) MaxSAT,
find a growing number of practical applications. Concrete recent examples include hard-
ware design debugging [19] and fault localization in C code [9]. In addition, reference
applications that usePseudo-Boolean Optimization(PBO) can be cast as MaxSAT [7,
4]. Another major application of MaxSAT is in algorithms forMinimal Unsatisfiable
Subset(MUS) enumeration [13]. Indeed, the most efficient MUS enumeration algo-
rithms build on MaxSAT algorithms for computing allMaximal Satisfiable Subsets
(MSSes) and, from these, MUSes can be enumerated using a standardhitting setap-
proach [13, 18]. The variety of relevant applications of MUSenumeration (e.g. [13, 1]),
further highlights the practical significance of efficient MaxSAT algorithms.

Motivated by the practical applications of MaxSAT, recent years have witnessed a
large number of MaxSAT algorithms being proposed. MaxSAT approaches for solving
practical problem instances differ significantly from early work on MaxSAT [12, 7].
These approaches are characterized by guiding the search with unsatisfiable subformu-
las [20] and are referred to ascore-guidedMaxSAT algorithms [6, 16, 14, 2, 3]. Recent
work has proposed two core-guided versions of binary searchfor MaxSAT [8]. These
include a basic version (BC) and a version that maintains a set of disjoint unsatisfiable

⋆ This work is partially supported by SFI grant BEACON (09/IN.1/I2618),and by FCT grants
ATTEST (CMU-PT/ELE/0009/2009) and POLARIS (PTDC/EIA-CCO/123051/2010).

cores (BCD). TheBCD algorithm was shown to be one of the most efficient on a compre-
hensive set of problem instances from recent MaxSAT evaluations. Nevertheless, recent
detailed analysis ofBCD revealed a number of possible inefficiencies, that result from
relaxed and conservative maintenance of lower and upper bounds.

This paper addresses the inefficiencies in the originalBCD algorithm, and develops
a number of key optimizations. These optimizations can be categorized as: (i) modi-
fications to how the upper bound of each disjoint core is initialized, updated, and an
associated maintenance of aglobal upper bound; (ii) modifications on how the lower
bounds are updated when disjoint cores aremerged; and (iii) techniques for refining the
lower bound so that it reflects a feasible sum of weights. The previous optimizations
are implemented in a new algorithm,BCD2, that often requires fewer SAT solver calls
thanBCD. The paper also proves the correctness ofBCD2 and shows thatBCD2 is sig-
nificantly more efficient thanBCD on a comprehensive set of benchmarks from recent
MaxSAT Evaluations.

In addition, the paper proposes two novel techniques, that can be implemented on
top of any core-guided MaxSAT algorithm that maintains bothlower and upper bounds,
namely thehardening ruleand biased search. The hardening rule, which has been
extensively used inbranch and boundalgorithms [5, 12, 11, 7], is adapted for core-
guided binary search algorithms. As a result, many soft clauses can be declaredhard.
Binary search algorithms always compute the middle value between a lower bound
and an upper bound. Thebiased searchtechnique allows biasing the search with the
outcomes of the previous iterations and compute a value between the lower and upper
bounds, thoughnot necessarilythe middle one.

The remainder of the paper is organized as follows. Section 2introduces the MaxSAT
problem and core-guided binary search MaxSAT algorithms. Section 3 details the in-
efficiencies of BCD, and develops a new improved algorithm for core-guided binary
search with disjoint cores (BCD2). Section 4 presents the hardening rule and biased
search techniques for core-guided MaxSAT. Section 5 evaluates the performance of the
algorithms with the proposed techniques. Section 6 presents some concluding remarks.

2 Preliminaries

Let X = {x1, x2, . . . , xn} be a set of Boolean variables. Aliteral l is either a vari-
ablexi or its negation̄xi. A clausec is a disjunction of literals. A clause may also be
regarded as a set of literals. AnassignmentA is a mappingA : X → {0, 1} which
satisfies (unsatisfies) a Boolean variablex if A(x) = 1 (A(x) = 0). Assignments can
be extended in a natural way for literals (l) and clauses (c):

A(l) =

{

A(x), if l = x

1−A(x), if l = ¬x
A(c) = max{A(l) | l ∈ c}

Assignments can also be regarded as set of literals, in whichcase the assignmentA
satisfies (unsatisfies) a variablex if x ∈ A (x̄ ∈ A). A complete assignmentcontains
a literal for each variable, otherwise is apartial assignment. A CNF formulaϕ is a set
of clauses. Amodel is a complete assignment that satisfies all the clauses in a CNF
formulaϕ. ThePropositional Satisfiability Problem(SAT) is the problem of deciding

whether there exists a model for a given formula. Given an unsatisfiable formulaϕ, a
subset of clausesϕC (i.e. ϕC ⊆ ϕ) whose conjunction is still unsatisfiable is called
an unsatisfiable coreof the original formula. Modern SAT solvers can be instructed
to generate an unsatisfiable core for unsatisfiable formulas[20]. A weightedclause is
a pair (c, w), wherec is a clause andw is the cost of its falsification, also called its
weight. Many real problems contain clauses thatmustbe satisfied. Such clauses are
calledmandatory(or hard) and are associated with a special weight⊤. Non-mandatory
clauses are also calledsoft clauses. Aweightedformula in conjunctive normal form
(WCNF)ϕ is a set of weighted clauses. For MaxSAT, amodelis a complete assignment
A that satisfies all mandatory clauses. Thecost of a modelis the sum of weights of the
soft clauses that it falsifies. Given a WCNF formula,Weighted Partial MaxSATis the
problem of finding a model of minimum cost.

Core-guided binary search algorithms for MaxSAT Several MaxSAT solvers in the
literature are based on iteratively calling a SAT solver andrefining alower bound, an
upper boundor both [6, 2, 3, 16, 14, 8, 10].Core-guided MaxSAT algorithmsare those
that additionally take advantage of unsatisfiable cores computed at each unsatisfiable
iteration to guide the search [6, 2, 3, 16, 14, 8], (some of which use binary search [8]).

Auxiliary notation is introduced to describe core-guided binary search MaxSAT al-
gorithms. The remainder of the paper assumes a WCNF formulaϕ withm soft clauses.
Core-guided algorithms userelaxation variables, which are fresh Boolean variables.
The algorithms described addat mostone relaxation variable to each soft clause. The
process of adding a relaxation variable to a clause, is referred to asrelaxing the clause.
Relaxation variables are maintained in a setR, and it is assumed that relaxation vari-
able ri is associated to the soft clauseci with weightwi, 1 ≤ i ≤ m. In order to
add relaxation variables to soft clauses, the algorithms use the functionRelax(R,ϕ, ψ)
which receives a set of existing relaxation variablesR, a WCNF formulaϕ and a set
of soft clausesψ and returns the pair(Ro, ϕo). ϕo corresponds toϕ whose soft clauses
included inψ have been augmented with fresh relaxation variables.Ro corresponds
to R augmented with the relaxation variables added inϕo. Given the set of relax-
ation variables inR, the algorithms addcardinality / pseudo-Boolean constraints[4]
and translate them to hard clauses. Such constraints usually state that the sum of the
weights of the relaxed clauses is less than or equal to a specific valueK (AtMostK
with

∑m
i=1 wiri ≤ K). The algorithms use the following functions:

– Soft(ϕ) returns the set of allsoftclauses inϕ.
– SATSolver(ϕ)makes a call to the SAT solver and returns a triple(st, ϕC ,A), where
st is the status of the formulaϕ, that is whetherϕ is satisfiable (SAT or UNSAT).
If st =UNSAT, thenϕC contains an unsatisfiable core ofϕ, and ifst =SAT, then
A corresponds to a complete satisfying assignment ofϕ. Throughout the paper, by
abuse of notation,st is referred to as the outcome of the SAT solver.

– CNF(c) returns a set of clauses that encode the constraintc into CNF.

Core-guided binary search(BC) and its extensionwith disjoint cores(BCD) [8] com-
pute both a lower bound and an upper bound and have been shown to be very robust
approaches for MaxSAT solving (in terms of number of solved instances). In what fol-
lows, the most sophisticated version (BCD) is briefly overviewed.

Algorithm 1: BCD
Input : ϕ

1 (ϕW , ϕS , C, lastA)← (ϕ, Soft(ϕ), ∅, ∅) // C - set of disj. core’s information
2 repeat
3 ∀Ci∈C, νi ← (λi + 1 = µi) ? µi : ⌊

µi+λi
2
⌋

4 (st, ϕC ,A)← SATSolver(ϕW ∪
⋃

Ci∈C
CNF(

∑

rj∈Ri
wj · rj ≤ νi))

5 if st = SAT then
6 lastA ← A
7 ∀Ci∈C, µi ←

∑

rj∈Ri
wj · A(rj)

8 else
9 subC ← Intersect(ϕC , C) // subC - set of disj. cores that intersect ϕC

10 if ϕC ∩ ϕS = ∅ and |subC| = |{< Rs, λs, νs, µs >}| = 1 then
11 λs ← νs

12 else
13 (Rs, ϕW)← Relax(∅, ϕW , ϕC ∩ ϕS)
14 (λs, µs)← (0,

∑

rj∈Rs
wj + 1)

15 ∀Ci∈subC, (Rs, λs, µs)← (Rs ∪ Ri, λs + λi, µs + µi)

16 C ← C \ subC ∪ {< Rs, λs, 0, µs >}

17 end
18 end
19 until ∀Ci∈C λi + 1 ≥ µi

20 return lastA

The pseudo-code ofBCD is shown in Algorithm 1.BCDmaintains information about
disjoint cores in a setC (initially empty). Whenever a new core is found, a new entryCs

in C is created, that contains the set of relaxation variablesRs in the core (after relaxing
required soft clauses), a lower boundλs, an upper boundµs, and the current middle
valueνs, i.e.Cs =< Rs, λs, νs, µs >. The algorithm iterates while there exists aCi

for which λi + 1 < µi (line 19). Before calling the SAT solver, for eachCi ∈ C, the
middle valueνi is computed with the current bounds and anAtMostK constraint is
added to the working formula (lines 3-4). If the SAT solver returns SAT, the algorithm
iterates over each coreCi ∈ C and its upper boundµi is updated according to the
satisfying assignmentA (lines 6-7). If the SAT solver returns UNSAT, then the set
subC is computed which contains everyCi in C that intersects the current core (i.e.
subC ⊆ C, line 9). If no soft clause needs to be relaxed and|subC| = 1, thensubC =
{< Rs, λs, νs, µs >} andλs is updated toνs (line 11). Otherwise, all the required soft
clauses are relaxed, an entry for the new coreCs is added toC, which aggregates the
information of the previous cores insubC, and eachCi ∈ subC is removed fromC
(lines 13-16).

A concept similar to disjoint cores (namely covers) is used by the core-guided (non
binary search) algorithm WPM2 [3] coupled with the constraints to add in each itera-
tion.

3 Improving BCD

Detailed analysis ofBCD has revealed two key inefficiencies, both related with how the
lower and upper bounds are computed and updated. The first observation is thatBCD
doesnot maintain aglobal upper bound. When the SAT solver outcome is satisfiable
(SAT), eachµi value is updated for each disjoint coreCi ∈ C, with an overall sum

Algorithm 2: BCD2
Input : ϕ

1 (ϕW , ϕS)← (ϕ,Soft(ϕ))
2 ∀cj∈ϕS

, σj ← wj

3 (C,Aµ, µ)← (∅, ∅, 1 +
∑

cj∈ϕS
σj)

4 repeat
5 ∀Ci∈C, νi ← ⌊

λi+ǫi
2
⌋

6 (st, ϕC ,A)← SATSolver(ϕW ∪
⋃

Ci∈C
CNF(

∑

rj∈Ri
wj · rj ≤ νi))

7 if st = SAT then
8 ∀cj∈ϕS

, σj ← 0

9 ∀Ci∈C∀rj∈Ri
, σj ← wj · (1−A(cj \ {rj})) // cj ∈ ϕW and rj ∈ cj

10 ∀Ci∈C, ǫi ←
∑

rj∈Ri
σj

11 (µ,Aµ)← (
∑

Ci∈C

∑

rj∈Ri
σj ,A)

12 else
13 subC ← Intersect(ϕC , C)
14 if ϕC ∩ ϕS = ∅ and |subC| = |{< Rs, λs, νs, ǫs >}| = 1 then
15 λs ← Refine({wj}rj∈RS

, νs)

16 else
17 (Rs, ϕW)← Relax(

⋃

Ci∈subC Ri, ϕW , ϕC ∩ ϕS)

18 ∆← min
{

1 + min{νi − λi | Ci ∈ subC},min{wj | rj is a new relax. var.}
}

19 λs ←Refine({wj}rj∈Rs ,
∑

Ci∈subC λi + ∆− 1)

20 ǫs ← ((Aµ = ∅) ? 1 : 0) +
∑

rj∈Rs
σj

21 C ← C \ subC ∪ {< Rs, λs, 0, ǫs >}

22 end
23 end
24 until

∑

Ci∈C
λi =

∑

Ci∈C
ǫi = µ

25 return Aµ

given byK1 =
∑

Ci∈C
µi. However, after merging disjoint cores, if the SAT solver

outcome is again SAT, it can happen thatK2 =
∑

Ci∈C
µi > K1. Although this issue

does not affect the correctness of the algorithm, it can result in a number of iterations
higher than needed to compute the optimum. The second observation is that the lower
bound updates for each disjoint core are conservative. A more careful analysis of how
the algorithm works allows devising significantly more aggressive lower bound updates.
Again, the main consequence of using conservative lower bounds is that this can result
in a number of iterations higher than needed to compute the optimum.

This section presents the new algorithmBCD2. Although similar toBCD,BCD2 pro-
poses key optimizations that address the inefficiencies described above. As the experi-
mental results demonstrate, these optimizations lead to significant performance gains,
that can be explained by a reduced number of iterations.

The pseudo-code ofBCD2 is shown in Algorithm 2. The organization ofBCD2 is
similar to the organization ofBCD but with important differences. The first difference
betweenBCD andBCD2 is the way the algorithms use the information of the upper
bounds. As stated before,BCD does not maintain a global upper bound, and as such,
whenever an upper bound is needed, then the worst case scenario is used. Concretely in
line 14 ofBCD, the upper bound is updated with the weights of the new relaxed clauses.

On the other hand,BCD2 keeps aglobal upper boundµ and its corresponding as-
signmentAµ. More importantly it maintains the cost of each soft clause for the current
global upper bound. In order to achieve this,BCD2 associates with each soft clausej

a variableσj that represents the contribution of the clause to the overall cost of the
global upper bound.σj can take as value either0 or wj (the weight of the soft clause
j) depending on whetherAµ unsatisfies the clause or not. In contrast toBCD, the con-
tribution of soft clauses is with respect to the original variables. As such in line 9 of
BCD2, the update ofσj considers the satisfiability of the clausecj without the relax-
ation variable (wj · (1 − A(cj \ {rj}))), rather than the satisfiability of the relaxation
variable (wj · A(rj)) as inBCD (line 7). Considering the satisfiability of the original
soft clause instead of the associated relaxation variable,has the benefit of tightening the
upper bound on assignments that satisfy the clause without the relaxation variable but
still satisfy the relaxation variable.

Unlike BCD, BCD2 does not maintain upper bounds in the disjoint cores. Instead,
each disjoint coreCi maintains anestimateǫi that represents the contribution of the
disjoint core to the cost of the global upper bound. Eachǫi takes the role of the upper
boundsµi in BCD, with updates that respect the last satisfying assignment.The differ-
ence is that inBCD2, the updates of the estimates, done in lines 10 and 20, include the
contribution of the soft clauses to the global upper bound (stored in theσj variables).

The use ofσj variables in the computation of estimatesǫi, allowBCD2 to use the in-
formation of the current upper bound assignment for a tighter bound, specifically, when
merging cores with soft clauses not previously relaxed. Thecontribution of the newly
relaxed clauses in the update ofǫi in line 20, is dependent on a previous discovery of a
satisfying assignment. Before the first satisfying assignment is found, the contribution
is the same as inBCD, that is the weight of the soft clause (σj = wj , initialization ofσj
in line 2 ofBCD2), whereas after the first satisfying assignment, newly relaxed clauses
are satisfied byAµ (thusσj = 0 from line 8) and its contribution toǫi is 0.

The reason why theǫi variables are called estimates is that, unlike the upper bound
µi of BCD, theǫi variables are allowed to have a value lower than the cost of the opti-
mum model restricted to the clauses associated to the disjoint core. In such situationsǫi
is said to beoptimisticand represents a local optimum of a MaxSAT model.BCD2 can
shift ǫi away from the local optimum by merging with different cores as needed.

Example 1.Consider an execution of the algorithm with the current working formula
ϕW = ϕS ∪ϕH , whereϕS = {(x1 ∨ r1, 5), (x2 ∨ r2, 10), (x3 ∨ r3, 30), (x4 ∨ r4, 10)} and
ϕH = {(¬x1 ∨ ¬x2), (¬x2 ∨ ¬x3), (¬x3 ∨ ¬x4)}. Consider the upper bound assignment
Aµ = {x1 = x3 = r2 = r4 = 0, x2 = x4 = r1 = r3 = 1} with a cost of 35, and two dis-
joint coresC1 =< R1 = {r1, r2}, λ1 = 5, ν1 = 5, ǫ1 = 5 >, C2 =< {r3, r4}, 10, 20, 30 >.

The optimum cost ofϕ is 20. Considering the optimum model, the contribution of
the clauses associated toC1 is 10 which is lower thanǫ1, thusǫ1 is optimistic. The next
core returned by the SAT solver mergesC1 andC2 into a new disjoint coreC3 with
ǫ3 = 35.

Another improvement inBCD2 is the way the lower bound is computed when merg-
ing cores. In this case,BCD2 proposes a stronger update in lines 18 and 19, which
corresponds to the expression in Equation 1.

∑

Ci∈subC

λi + min
{

1 + min{νi − λi|Ci ∈ subC}, min{wj |rj new relax. var.}
}

(1)

The update of the lower bound of the merged disjoint cores in Equation 1, is obtained
by summing all the previous lower bounds, as is done byBCD in line 15, but also by
adding an increment∆ (line 18 inBCD2). The rationale for the increment∆ comes as
a justification for obtaining the current core. At this pointof the algorithm, there are
three possible reasons why the current core was obtained: (i) one or more of the newly
relaxed soft clauses has a non-zero contribution to the costof the final optimum model;
(ii) one or more of the disjoint cores is unable to satisfy thecorresponding constraint
∑

rj∈Ri
wj · rj ≤ νi; (iii) a combination of the previous two.

Suppose that the reason for obtaining the current core is as stated in (i). Since the
number of newly relaxed soft clauses with a non-zero contribution is unknown, then∆
corresponds to the weight of the relaxation variable with the lowest weight, that is, in
this case∆ = min{wj |rj new relax. var.}.

Consider now that the reason for obtaining the current core is as stated in (ii). Then
at least one of the disjoint cores merged, requires its lowerbound to be increased from
λi to νi + 1 (an increment of1 + νi − λi). Since it is unknown which disjoint cores
require to be increased, then in∆ is only considered the disjoint core with the lowest
increment, that is∆ = 1 +min{νi − λi|Ci ∈ subC}.

Finally, in the case of reason (iii), the increment∆ can be obtained by summing the
increments corresponding to the previous reasons. Nevertheless, it is unknown exactly
which of the three reasons explains the current core, thenBCD2 uses as increment the
minimum of the previous increments, thus obtaining the expression in Equation 1.

An additional difference between the algorithms is the use of the Refine() function
to further improve the update of the lower bound in lines 15 and 19 of BCD2. The
result of Refine({wj}, λ) is the smallest integer greater thanλ that can be obtained
by summing a subset of the input weights{wj}. In BCD2, Refine({wj}, λ) starts by
searching if all weights are equal, in which case the minimumsum of weights greater
thanλ is returned, otherwise,subsetsum({wj}, λ) is computed as used by WPM2 [3].

Finally, the last difference betweenBCD andBCD2 is the stopping criteria. Given
the new bounds,BCD2 stops when the sum the lower bounds of each disjoint core is the
same as the global upper bound.

3.1 Proof of correctness

This subsection proves the correctness of theBCD2 algorithm. First, the correctness
of the updates of the lower bound are proven, followed by a proof of the invariant of
BCD2. The section ends with a proof of the correctness ofBCD2.

Proposition 1. Consider a disjoint coreCs in the conditions of the update ofλs in
line 15. There is no MaxSAT model for which the clauses associated toCs contribute to
the cost with a value smaller thanRefine({wj}rj∈Rs

, νs).

Proof. Consider an iteration where the SAT solver returned a core which only contains
clauses previously relaxed, and that these clauses belong to the same disjoint coreCs.

For the purpose of contradiction, assume there is a model forwhich the clauses of
Cs contribute with a cost lower thanνs + 1. Then the assignment of the model can
be augmented with assignments to the relaxation variables,such that, each relaxation

variableri ∈ Rs is assigned true iff the assignment of the model does not satisfy the
corresponding clauseci. The augmented assignment is able to satisfy the constraint
∑

ri∈Rs
wi · ri ≤ νs, all the hard clauses (because it is a MaxSAT model), and all the

soft clauses (due to the assignments to the relaxation variables). Then the core returned
by the SAT solver is not an unsatisfiable subformula, which isa contradiction, thus the
updateλs ← νs + 1 is correct.

Since there is no model withλs ≤ νs, then the next value to consider for
∑

ri∈Rs
wi·

ri is the minimum sum of subsets of{wj}rj∈Rs
that is greater thanνs. This corresponds

to the value returned byRefine({wj}rj∈Rs
, νs). Thus the update on line 15 is correct.

Proposition 2. Consider the subset of disjoint coressubC = {C1, . . . , Cm} and a new
set of relaxation variables and∆ as in the conditions of line 19, then there is no MaxSAT
model for which the clauses associated to the resulting disjoint coreCs contribute to
the cost with a value smaller thanRefine({wj}rj∈Rs

,
∑

Ci∈subC
λi +∆− 1).

Proof. There is no model with cost lower than
∑

Ci∈subC
λi because at this point of

the algorithm, each disjoint coreCi ∈ subC has been proved to have a lower bound of
at leastλi. Then the union of disjoint sets of the clauses of eachCi together with the
clauses that just got relaxed have a cost of at least

∑

Ci
λi in any MaxSAT model.

Consider by contradiction, that there is a model, for which the clauses associated to
the resulting disjoint coreCs, have a costcostSol ∈ [

∑

Ci∈subC λi,
∑

Ci∈subC λi +∆[.
Two cases are considered.

1) In the first case, suppose that the model assigns to true at least one of the new
relaxation variables (of the soft clauses that just got relaxed), and that the cost associated
to that relaxation variable iswnewRV . Then,

wnewRV ≥ min{wj |rj is a new relax. var.} ≥ ∆

Consider the contribution of all the clauses without the newly relaxed clause:

costSol − wnewRV ≤ costSol −∆

but by contradictioncostSol <
∑

Ci∈subC
λi +∆ and then

costSol − wnewRV ≤ costSol −∆ <
∑

Ci∈subC

λi

which means that the contribution of the remaining clauses is lower than
∑

Ci∈subC
λi;

but this is a contradiction (previously the cost of the unionof clauses ofCi ∈ subC was
proven to be at least

∑

Ci∈subC
λi).

2) In the second case suppose that the model assigns all newly relaxed clauses to
false, then the contribution of the newly relaxed clauses is0. Since by contradiction

costSol <
∑

Ci∈subC

λi +∆ ≤
∑

Ci∈subC

λi + 1 +min{νi − λi|Ci ∈ subC}

then
costSol −

∑

Ci∈subC\{C1}

λi ≤ λ1 +min{νi − λi|Ci ∈ subC} ≤ ν1

Let costSol〈Ci〉 be the contribution of the clauses ofCi to the cost of the model.
Previously, was proven thatcostSol〈Ci〉 ≥ λi, then

costSol〈C1〉 = costSol −
∑

Ci∈subC\{C1}

costSol〈Ci〉 ≤ costSol −
∑

Ci∈subC\{C1}

λi ≤ ν1

By analogy, for each of the disjoint cores mergedCi ∈ subC, costSol〈Ci〉 ≤ νi Then
the model is able to satisfy all the new soft clauses and the constraints

∑

rj∈Ri
wj ·rj ≤

νi. Since the model is a MaxSAT model, then it is also able satisfy all the hard clauses,
meaning that the model is able to satisfy all the clauses in the core; but this is again a
contradiction.

Since there is no model withλs <
∑

Ci∈subC
λi+∆, then the next value to consider

for
∑

ri∈Rs
wi · ri is the minimum sum of subsets of{wj}rj∈Rs

that is greater than
∑

Ci∈subC
λi +∆− 1. This corresponds to the value returned by

Refine({wj}rj∈Rs
,
∑

Ci∈subC
λi +∆− 1). Thus the update on line 19 is correct.

Proposition 3 (Invariant of BCD2). Let opt be cost of the optimum model of a MaxSAT
instance. During the execution ofBCD2, the invariant

∑

Ci∈C
λi ≤ opt ≤ µ holds.

Proof. Initially C is empty, and
∑

Ci∈C
λi is 0. On the other hand,µ is initialized to

∑

(cj ,wj)∈Soft(ϕ) wj + 1. Since0 ≤ opt ≤
∑

(cj ,wj)∈Soft(ϕ) wj , then initially the
invariant holds.

Eachλi is only updated on unsatisfiable iterations in lines 15 and 19and each update
was proved to be correct in Propositions 1 and 2, respectively. Then after the updates
we are guaranteed that

∑

Ci∈C
λi ≤ opt.

Consider now a satisfiable iteration. Assume for the sake of contradiction thatµ
is updated such thatµ < opt. Then the assignment returned by the SAT solver can
be extended with assignments to new relaxation variables (one for each clause not yet
relaxed). In particular, these variables can be assigned value false. Then, the sum of
the weights of the relaxation variables assigned value trueis lower thanopt which is
a contradiction since, by definition, the sum of weights of relaxed clauses is an upper
bound on the optimum MaxSAT model.

Proposition 4. For any disjoint coreCs, the invariantλs ≤ ǫs holds.

Proof. The values of variablesǫi are only updated in lines 10 and 20 (see Algorithm 2).
The updates are due to assignments that are models to the MaxSAT formula, and repre-
sent the cost of the model with respect to the clauses associated to the disjoint coreCi.
Line 20 also considers the case where no model has been found yet, and updatesǫi to
one plus the sum of all the weights of the soft clauses considered.

On the other hand, the values of variablesλi are only updated in lines 15 and 19.
In Propositions 1 and 2, was proven that there is no MaxSAT model with a cost smaller
than the update of the lower bound in lines 15 and 19 (with respect to the clauses
associated with the resulting coreCs). Hence,λs ≤ ǫs for each disjoint coreCs.

Proposition 5. BCD2 is correct and returns the optimum model for any WCNF for-
mula.

Proof. The algorithm performs binary search on the range of values{
∑

Ci∈C λi, . . . , µ}.
In each iteration the algorithm asks for a model with a cost atmost

∑

Ci∈C νi. Due to
the assignment of eachνi in line 5 and Proposition 4, then

∑

Ci∈C λi ≤
∑

Ci∈C νi ≤ µ.
If the SAT solver returns with a satisfiable answer, thenµ is updated to a lower value
than the current upper bound (due to the added constraints).If the SAT solver returns
with an unsatisfiable answer, then either

∑

Ci∈C
λi increases or more than one of the

disjoint cores are merged. Since the number of clauses to be relaxed is bounded by
the number of soft clauses, then the maximum number of mergesof disjoint cores is
also bounded (disjoint cores only contain clauses that are relaxed). Thus the number of
iterations where the algorithm does not increase the sum

∑

Ci∈C
λi, is bounded.

Finally, Proposition 3 proves that during the execution of the algorithm, there is
always an optimum MaxSAT model between the bounds. Since thebounds are integer
numbers, then the algorithm is guaranteed to stop with the optimum MaxSAT model.

4 Additional Techniques

This section introduces two additional techniques to improve the performance of core-
guided binary search algorithms, namely, the hardening rule and biased search.

4.1 Hardening rule

Thehardening ruleis widely used inbranch and bound(BB) algorithms for MaxSAT
[12, 11, 7] which are based on asystematic enumerationof all possible assignments,
where large subsets ofuselessassignments are discarded by computingupperandlower
boundson the cost of the optimum model. Whenever the weight of a soft clause plus
the lower bound reaches the upper bound, the clause can bemadehard. Indeed, the
hardening rule was introduced in the most primitive BB algorithm for MaxSAT in the
literature [5], but nowadays is still not used in core-guided MaxSAT algorithms. In what
follows, a first integration of the hardening rule is proposed for core-guided MaxSAT
algorithms that maintain both a lower bound and upper bound.To explain the idea, each
soft clause(c, w) is extended with two weights(c, w,w′) wherew is the original weight
andw′ represents the weight of the clause after itscontributionsto the lower bound have
been deducted.w′ will be referred as thedeductedweight. Letϕd be a set of soft clauses
involved in an incrementd of the global lower bound. Then, the deducted weight of all
the soft clauses inϕd needs to be decreased byd. As a result, the hardening rule is
applied taking into account the deducted weight rather thanthe original one. Hence, the
hardening rule is shown in Equation 2

if w′ + λ ≥ µ then(c, w,w′) can be replaced by(c,⊤,⊤) (2)

Let (c, w,w′) be a soft clause that is made hard due to the hardening rule. There are
two situations. If the soft clause has no relaxation variable, the weight of the clause is
just replaced by⊤. If the soft clause has a relaxation variable, the weight is updated to
⊤ and additionally, the relaxation variable is removed.

Example 2.Consider the formula{(x, 3, 3), (x̄, 4, 4), (y, 3, 3), . . . }. An initial upper
boundµ = 5 is obtained using any heuristic [8]. An initial lower boundλ = 3 can

be obtained due to an unsatisfiable core between the two first clauses. The minimum
weight for the conflicting clauses(x, 3, 3) and(x̄, 4, 4) is 3. The resulting formula is
{(x, 3, 0), (x̄, 4, 1), (y, 3, 3), . . . } with λ = 3. Then, the hardening rule can be applied
to the clause(y, 3, 3) given that3 + 3 ≥ 5 . Hence,(y, 3, 3) is replaced by(y,⊤,⊤).
The current formula is{(x, 3, 0), (x̄, 4, 1), (y,⊤,⊤), . . . } with λ = 3 andµ = 5.

The integration of the hardening rule inBCD2 is as follows. Assume BCD2 main-
tains internally the deducted weight of each soft clause, then any of the initial lower
bounds introduced in [8] can be used. Such lower bounds iteratively compute unsat-
isfiable cores until a satisfiable instance is reached. For each unsatisfiable core, the
minimum weight is subtracted to the deducted weight of each soft clause in the core.

Assume any arbitrary iteration of the main loop ofBCD2. Letλ =
∑

Ci∈C
λi be the

global lower bound and letµ =
∑

Ci∈C
ǫi be the global upper bound, before the call

to the SAT solver (line 6). After the call to the SAT solver, there are two possibilities:

– The SAT solver returns satisfiable (SAT). The global upper boundµ is updated and
the hardening rule is checked with the new global upper bound.

– The SAT solver returns unsatisfiable (UNSAT) and the global lower bound is in-
creased. Letλ′ =

∑

Ci∈C
λi be the new global lower bound in line 23. Letd

be the difference between the previous and the current global lower bounds, i.e.,
d = λ′ − λ. Such incrementd is due to the disjoint coreCs in line 15 or in line
21. Hence, the deducted weight of each soft clause in the proper disjoint coreCs is
decreased byd. Afterwards, the hardening rule is checked.

4.2 Biased Search

At each iteration, binary search algorithms compute a middle valueν between an upper
boundµ and a lower boundλ (i.e.ν ← ⌊µ+λ

2 ⌋). However, when the cost of the optimum
model is close to one of the bounds, binary search can make several iterations before
realizing that. In fact, QMAX SAT (0.4 version) solver [10] alternates iterations which
compute the middle value between the bounds, and iterationswhich use the value of the
upper bound. As such, QMAX SAT favors the discovery of models with a cost closer
to the upper bound. Note that QMAX SAT was the best performing solver on recent
MaxSAT Evaluations in thepartial MaxSAT industrialcategory.

This paper proposes to compute a value between the lower bound and upper bound
(i.e. ν ∈ [λ, µ]) based on the previous iterations. Two counters are maintained. A
counter of the iterations that returned satisfiable (SAT)nsat, and a counter of the iter-
ations that returned unsatisfiable (UNSAT)nunsat. Both counters are initialized to 1.
At each iteration of the binary search algorithm the following percentage is computed:

p = nunsat/(nunsat+ nsat)

The expression compares the number of unsatisfiable iterations against the total number
of iterations, and gives a value closer to the bound with fewer outcomes in terms of a
percentage. The valueν to be considered at each iteration isν = λ+ p× (µ− λ).

Note that the QMAX SAT approach is similar to always alternating the percentage
p between50% (middle value) and100% (upper bound). The integration inBCD2 is
straightforward. For each disjoint coreCi with estimate of the upper boundǫi and lower
boundλi, BCD2 computes the valueνi asνi = λi + p× (ǫi − λi).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 200 400 600 800 1000 1200 1400 1600 1800

B
C

D

BCD2

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1500 1550 1600 1650 1700 1750 1800

C
P

U
 ti

m
e

Instances

BC
BCD

BCD2
BCD2-B
BCD2-H

BCD2-B-H

(a) (b)

Fig. 1. (a) Scatter plot ofBCD vs BCD2, (b) Cactus plot ofBC, BCD, BCD2 andBCD2 with
additional techniques

5 Experimental Evaluation

Experiments were conducted on a HPC cluster with 50 nodes, each node is a CPU
Xeon E5450 3GHz, 32GB RAM and Linux. For each run, the time limit was set to
1800 seconds and the memory limit to 4GB.BCD2 and the additional techniques were
implemented in the MSUNCORE [17] system, and compared againstBC andBCD3.

Figure 1 presents results on the performance ofBCD2 (from Section 3) and the
new techniques (from Section 4) in all of thenon-randominstances from 2009-2011
MaxSAT Evaluations (for a total of 2615 instances). The scatter plot (Figure 1.a) shows
a comparison of the originalBCD [8] with BCD2 (as described in Section 3). Note that
BCD2 (1813) solves 12 more instances thanBCD (1801). The scatter plot indicates that
in generalBCD requires larger run times thanBCD2. A more detailed analysis indicates
that, out of 1305 instances where the performance difference betweenBCD andBCD2
exceeds 20%,BCD2 outperformsBCD in 918, whereasBCD outperformsBCD2 in 387.
Moreover, over the 1793 instances solved by bothBCD andBCD2, the total number of
SAT solver calls forBCD is 124907 and forBCD2 is 68690. This represents an average
of 31.5 fewer SAT solver calls per instance forBCD2 (from 69.7 to 38.3), i.e. close to
50% fewer calls inBCD2 than inBCD on average. The difference is quite significant;
it demonstrates the effectiveness of the new algorithm, butalso indirectly suggests that
some of the SAT solver calls, being closer to the optimum, maybe harder forBCD2
than forBCD. Nevertheless,BCD2 consistently outperformsBCD overall.

The cactus plot (Figure 1.b) shows the run times forBCD, BCD2, BCD2 with hard-
ening rule (BCD2-H), BCD2 with biased search (BCD2-B) andBCD2 with both tech-
niques (BCD2-B-H). The original core-guided binary search algorithm [8] (BC) is also
included. The performance difference betweenBCD andBCD2 is conclusive, and con-
firmed by the area below each plot. For the vast majority of instances,BCD2 outper-
formsBCD. The hardening rule (BCD2-H) allows solving 3 additional instances than

3 Observe that in [8],BCD was shown to solve more instances than a representative sample of
MaxSAT solvers.

Set #I. BC BCD BCD2 BCD2-B BCD-H BCD-B-H
Upgrade 100 65 100 100 100 100 100
TimeT 32 11 12 12 13 13 13
Pedi-A 45 37 38 39 39 41 44
Pedi-B 45 45 44 44 44 45 45
Pedi-C 90 68 73 77 76 84 83
Pedi-D 50 44 44 43 43 45 45
Pedi-E 90 42 50 57 59 66 67
Pedi-F 90 49 59 63 62 73 74
Pedi-G 90 20 30 39 40 47 50
Total 632 381 450 474 476 514 521

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 200 250 300 350 400 450 500

C
P

U
 T

im
e

Instances

BC
BCD

BCD2
BCD2-B
BCD2-H

BCD2-B-H

(a) (b)

Fig. 2. (a) Table number of solved instances per algorithm (b) Cactus plot with thedifferent
algorithms.

BCD2, whereas biased search (BCD2-B) allows solving one more instance. However,
the integration of both techniques (BCD2-B-H) allows solving 1832 instances, i.e. 19
more instances thanBCD2 and 31 more than the originalBCD. As expected,BC is the
worst performing algorithm (solves 1730 instances), and indirectly demonstrates that
maintaining disjoint cores is essential to obtain a more robust algorithm.

The effect of the more accurate bounds maintained byBCD2 and the additional
techniques is even more significant on weighted partial MaxSAT industrial instances. A
second experiment, see Figure 2, shows the results for 100upgradeabilityinstances, 32
timetablinginstances [3] and 500haplotyping with pedigreesinstances [15]. Observe
that the haplotyping with pedigrees instances are divided in 7 sets (A, B, C, D, E, F, G).
The results are summarized in the table of Figure 2.a. The first column shows the name
of benchmark set. The second column shows the total number ofinstances in the set.
The remaining columns show the total number of solved instances within the time and
memory limits byBC, BCD and the different versions ofBCD2. The same results are
presented with a cactus plot in Figure 2.b to highlight the runtimes.

BC is again the worst performing algorithm, and is the only approach unable to
solve the 100 upgradeability problems.BCD outperformsBC and solves 69 more in-
stances.BCD2 is clearly better thanBCD, being able to solve 26 more instances. Biased
search (BCD2-B) has small effect and solves 2 more instances thanBCD2. The harden-
ing rule (BCD2-H) is quite helpful on these instances and solves 40 more instances than
BCD2. Finally, the integration of the two new techniques (BCD2-B-H) allows solving
521 instances, i.e. 47 more instances thanBCD2 and 71 more than the originalBCD.

6 Conclusions

This paper proposes a number of improvements to a recently proposed MaxSAT algo-
rithm [8] that implements core-guided binary search. The first improvement addresses
the organization of the original algorithm, and modifies thealgorithm to (i) maintain
a global upper bound, that results in tighter local upper bounds for each disjoint core;

and (ii) use of more aggressive lower bounding techniques. The improvements to the
upper and lower bound result in significant reduction in the number of SAT solver calls
made by the algorithm. The second improvement consists of two techniques that can
be implemented on top of any core-guided algorithm that useslower and upper bounds.
One of the techniques is referred to as the hardening rule andhas been extensively
used in branch-and-bound algorithms [5, 12, 11, 7], but not in core-guided algorithms.
The second technique is referred to asbiased search, and is shown to work effectively
with the hardening rule. Experimental results, obtained ona comprehensive set of in-
stances from past MaxSAT Evaluations, demonstrates that the new algorithmBCD2
significantly outperforms (an already quite robust)BCD.

References

1. Z. S. Andraus, M. H. Liffiton, and K. A. Sakallah. Reveal: A formalverification tool for
verilog designs. InLPAR, pages 343–352, 2008.

2. C. Anśotegui, M. L. Bonet, and J. Levy. Solving (weighted) partial MaxSAT through satis-
fiability testing. InSAT, pages 427–440, 2009.

3. C. Anśotegui, M. L. Bonet, and J. Levy. A new algorithm for weighted partial maxsat. In
AAAI Conference on Artificial Intelligence. AAAI, 2010.

4. A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors.Handbook of Satisfiability, 2009.
5. Brian Borchers and Judith Furman. A two-phase exact algorithm formax-sat and weighted

max-sat problems.J. Comb. Optim., 2(4):299–306, 1998.
6. Z. Fu and S. Malik. On solving the partial MAX-SAT problem. InSAT, pages 252–265,

August 2006.
7. F. Heras, J. Larrosa, and A. Oliveras. MiniMaxSat: An efficient weighted Max-SAT solver.

JAIR, 31:1–32, Jan 2008.
8. F. Heras, A. Morgado, and J. Marques-Silva. Core-guided binary search algorithms for

maximum satisfiability. InAAAI, 2011.
9. M. Jose and R. Majumdar. Cause clue clauses: error localization using maximum satisfiabil-

ity. In PLDI, pages 437–446, 2011.
10. M. Koshimura, T. Zhang, H. Fujita, , and R. Hasegawa. QMaxSAT:A partial Max-SAT

solver.JSAT, pages 95–100, 2012.
11. J. Larrosa, F. Heras, and S. de Givry. A logical approach to efficient Max-SAT solving.

Artificial Intelligence, 172(2-3):204–233, 2008.
12. C. M. Li, F. Manỳa, and J. Planes. New inference rules for Max-SAT.Journal of Artificial

Intelligence Research, 30:321–359, October 2007.
13. Mark H. Liffiton and Karem A. Sakallah. Algorithms for computing minimal unsatisfiable

subsets of constraints.J. Autom. Reasoning, 40(1):1–33, 2008.
14. V. Manquinho, J. Marques-Silva, and J. Planes. Algorithms for weighted Boolean optimiza-

tion. In SAT, pages 495–508, 2009.
15. J. Marques-Silva, J. Argelich, A. Graca, and I. Lynce. Booleanlexicographic optimization:

Algorithms and applications.Annals of Mathematics and A. I., pages 1–27, 2011.
16. J. Marques-Silva and J. Planes. Algorithms for maximum satisfiability using unsatisfiable

cores. InDATE, pages 408–413, 2008.
17. A. Morgado, F. Heras, and J. Marques-Silva. The MSUnCore MaxSAT solver. InPOS, 2011.
18. R. Reiter. A theory of diagnosis from first principles.Artif. Intell., 32(1):57–95, 1987.
19. S. Safarpour, H. Mangassarian, A. Veneris, M. H. Liffiton, andK. A. Sakallah. Improved

design debugging using maximum satisfiability. InFMCAD, 2007.
20. L. Zhang and S. Malik. Validating sat solvers using an independent resolution-based checker:

Practical implementations and other applications. InDATE, pages 10880–10885, 2003.

	Improvements to core-guided binary search for MaxSAT

