posted on 2023-02-28, 12:51authored byDavid Richardson
In this research, we investigate electrolessly deposited nanotubes due to their unique associated magnetic and catalytic properties. The main challenge associated with electroless deposition is the formation of a nanotube structure with a uniform wall thickness. In this study, we investigate the electroless deposition process of nanotubes within a polycarbonate membrane. By identifying the conditions required to ensure a kinetically controlled deposition process, we achieve the formation of continuous nanotubes with a uniform wall thickness.
Electrolessly deposited alloys containing Ni, Fe and Co are magnetic and have many potential applications in future technologies. In this work, we investigate the magnetic properties of a series of alloys including Ni-B, Ni-Fe-B, Co-B and Ni-Cu-B nanotube structures. We establish the relationships between the magnetic properties of the nanostructure and their structure and compositional parameters. We also characterise the magnetic reversal mechanisms associated with the nanotube structure, which depend on the alloy used. We achieve a maximum specific magnetisation of 84.3 J T-1 kg-1 and a minimum coercivity of 0.003 T.
Alloyed deposits containing B can be used to catalyse hydrogen release from an alkaline NaBH4 solution. In this study, a variety of nanostructured alloys, including Ni-B, Co-B, NiCu-B, NiFe-B and NiCo-B and CoNiFe-B are investigated as catalysts for hydrogen generation. We show that nanostructured catalysts have larger hydrogen generation than metallic films with a maximum hydrogen generation rate of 10,800 ml min-1 g-1.
Funding
Using the Cloud to Streamline the Development of Mobile Phone Apps