Loading...
Thumbnail Image
Publication

Novel bimodal micro-mesoporous Ni50Co50-LDH/ UiO-66-NH2 nanocomposite for Tl(I) adsorption

Date
2021
Abstract
Ni50Co50-layered double hydroxide/UiO-66-NH2 metal–organic framework nanocomposite (Ni50Co50-LDH/UiO-66-NH2 NC) was synthesized through a facile ultrasonic-assisted hydrothermal method. UiO-66-NH2 MOF nanocrystals were in situ grown on the surface of ultrathin 2-dimensional functionalized Ni50Co50-LDH nanosheets. Using this method, a uniform nanocomposite architecture was obtained by uniformly distributing MOF nanocrystals on Ni50Co50-LDH. The synthesized LDH/MOF NC possesses essential properties of potential nano adsorbent such as high surface area (907 m2 g 1 ), large pore volume (0.91 cm3 g1), bimodal micro mesoporous structure, and chemical functionality. Accordingly, Ni50Co50-LDH/UiO-66-NH2 NC was used as an adsorbent for the uptake of toxic thallium (I) from water. Isotherm, thermodynamic, and kinetic studies were conducted to gain a better insight into the adsorption mechanism (s) involved in the removal process. Langmuir and pseudo-first-order models present a better fit to the isotherm and kinetic data, respectively, and the maximum Langmuir adsorption capacity was found to be 601.3 mg g 1 after non-linear fitting analysis (pH=7.0, solution volume=30 mL, initial thallium (I) concentration=50 mg L–1, contact time=15 min, solution temperature=293 K)
Supervisor
Description
peer-reviewed
Publisher
Elsevier
Citation
Arabian Journal of Chemistry;14, 103058
Funding code
Funding Information
Government of the Russian Federation, Ministry of Science and Higher Education of Russia
Sustainable Development Goals
External Link
Type
Article
Rights
https://creativecommons.org/licenses/by-nc-sa/1.0/
License